Xiaohang Ma, Zhijie Chen, Tianwen Zhang, Xueqian Zhang, Yuan Ma, Yanqing Guo, Yiyong Wei, Mengyuan Ge, Zhiguo Hou, and Zhenfa Zi, Efficient utilization of glass fiber separator for low-cost sodium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1878-1886. https://doi.org/10.1007/s12613-023-2691-9
Cite this article as:
Xiaohang Ma, Zhijie Chen, Tianwen Zhang, Xueqian Zhang, Yuan Ma, Yanqing Guo, Yiyong Wei, Mengyuan Ge, Zhiguo Hou, and Zhenfa Zi, Efficient utilization of glass fiber separator for low-cost sodium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1878-1886. https://doi.org/10.1007/s12613-023-2691-9
Research Article

Efficient utilization of glass fiber separator for low-cost sodium-ion batteries

+ Author Affiliations
  • Corresponding author:

    Zhenfa Zi    E-mail: zfzi@issp.ac.cn

  • Received: 6 April 2023Revised: 29 May 2023Accepted: 15 June 2023Available online: 17 June 2023
  • The separator is a key component of sodium-ion battery, which greatly affects the electrochemical performances and safety characteristics of the battery. Conventional glass fiber separator cannot meet the requirements of large-scale application because of high cost and poor mechanical properties. Herein, the novel composite separators are prepared by a simple slurry sieving process using glass fiber separator scraps and ordinary qualitative filter paper as raw materials. As the composite mass ratio is 1:1, the composite separator has excellent comprehensive properties, including tensile strength of 15.8 MPa, porosity of 74.3%, ionic conductivity of 1.57 × 10−3 S·cm−1 and thermal stability at 210°C. The assembled sodium-ion battery shows superior cycling performance (capacity retention of 94.1% after 500 cycles at 1C) and rate capacity (retention rate of 87.3% at 10C), and it maintains fine interface stability. The above results provide some new ideas for the separator design of high-performance and low-cost sodium-ion batteries.
  • loading
  • Supplementary Information-10.1007s12613-023-2691-9.doc
  • [1]
    C. Yang, S. Xin, L.Q. Mai, and Y. You, Materials design for high-safety sodium-ion battery, Adv. Energy Mater., 11(2021), No. 2, art. No. 2000974. doi: 10.1002/aenm.202000974
    [2]
    K.M. Abraham, How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett., 5(2020), No. 11, p. 3544. doi: 10.1021/acsenergylett.0c02181
    [3]
    C.L. Zhao, Q.D. Wang, Z.P. Yao, et al., Rational design of layered oxide materials for sodium-ion batteries, Science, 370(2020), No. 6517, p. 708. doi: 10.1126/science.aay9972
    [4]
    L. Xue, X.Q. Shi, B.W. Lin, Q.B. Guo, Y. Zhao, and H. Xia, Self-standing P2/P3 heterostructured Na0.7CoO2 nanosheet arrays as 3D cathodes for flexible sodium-ion batteries, J. Power Sources, 457(2020), art. No. 228059. doi: 10.1016/j.jpowsour.2020.228059
    [5]
    X. Zhou, A.L. Zhao, Z.X. Chen, and Y.L. Cao, Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: A mini review, Electrochem. Commun., 122(2021), art. No. 106897. doi: 10.1016/j.elecom.2020.106897
    [6]
    J. Peng, W. Zhang, Q.N. Liu, et al., Prussian blue analogues for sodium-ion batteries: Past, present, and future, Adv. Mater., 34(2022), No. 15, art. No. e2108384. doi: 10.1002/adma.202108384
    [7]
    L. Xu, H. Li, T. Du, et al., An all Prussian blue analog-based aprotic sodium-ion battery, Battery Energy, 1(2022), No. 2, art. No. 20210003. doi: 10.1002/bte2.20210003
    [8]
    H. Zhang, J. Peng, L. Li, et al., Low-cost zinc substitution of iron-based Prussian blue analogs as long lifespan cathode materials for fast charging sodium-ion batteries, Adv. Funct. Mater., 33(2023), No. 2, art. No. 2210725. doi: 10.1002/adfm.202210725
    [9]
    L. Chen, Z.Q. Zhong, S.B. Ren, and D.M. Han, Carbon-coated Na3V2(PO4)3 supported on multiwalled carbon nanotubes for half-/ full-cell sodium-ion batteries, Energy Technol., 8(2020), No. 3, art. No. 1901080. doi: 10.1002/ente.201901080
    [10]
    V. Priyanka, G. Savithiri, R. Subadevi, and M. Sivakumar, An emerging electrochemically active maricite NaMnPO4 as cathode material at elevated temperature for sodium-ion batteries, Appl. Nanosci., 10(2020), No. 10, p. 3945. doi: 10.1007/s13204-020-01506-8
    [11]
    W. Chang, X.Y. Zhang, J. Qu, et al., Freestanding Na3V2O2(PO4)2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41419. doi: 10.1021/acsami.0c11074
    [12]
    D. Ledwoch, J.B. Robinson, D. Gastol, et al., Hard carbon composite electrodes for sodium-ion batteries with nano-zeolite and carbon black additives, Batteries Supercaps, 4(2021), No. 1, p. 163. doi: 10.1002/batt.202000161
    [13]
    W. Sun, Q. Sun, R.F. Lu, et al., Sodium hypophosphite-assist pyrolysis of coal pitch to synthesis P-doped carbon nanosheet anode for ultrafast and long-term cycling sodium-ion batteries, J. Alloys Compd., 889(2021), art. No. 161678. doi: 10.1016/j.jallcom.2021.161678
    [14]
    Y.H. Liu, Q.Z. Liu, C. Jian, et al., Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus, Nat. Commun., 11(2020), art. No. 2520. doi: 10.1038/s41467-020-16077-z
    [15]
    X. Wu, X.X. Lan, R.Z. Hu, Y. Yao, Y. Yu, and M. Zhu, Tin-based anode materials for stable sodium storage: Progress and perspective, Adv. Mater., 34(2022), No. 7, art. No. 2106895. doi: 10.1002/adma.202106895
    [16]
    H. Chen, B.B. Xu, Q.S. Ping, et al., Co2B2O5 as an anode material with high capacity for sodium ion batteries, Rare Met., 39(2020), No. 9, p. 1045. doi: 10.1007/s12598-020-01383-8
    [17]
    H. Qiu, H.Y. Zheng, Y.H. Jin, et al., Mesoporous cubic SnO2–CoO nanoparticles deposited on graphene as anode materials for sodium ion batteries, J. Alloys Compd., 874(2021), art. No. 159967. doi: 10.1016/j.jallcom.2021.159967
    [18]
    L. Coustan, J.M. Tarascon, and C. Laberty-Robert, Thin fiber-based separators for high-rate sodium ion batteries, ACS Appl. Energy Mater., 2(2019), No. 12, p. 8369. doi: 10.1021/acsaem.9b01821
    [19]
    S. Janakiraman, A. Surendran, S. Ghosh, S. Anandhan, and A. Venimadhav, Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency, Solid State Ionics, 292(2016), p. 130. doi: 10.1016/j.ssi.2016.05.020
    [20]
    M.H. Li, G.J. Lu, W.K. Zheng, et al., Multifunctionalized safe separator toward practical sodium-metal batteries with high-performance under high mass loading, Adv. Funct. Mater., 33(2023), No. 26, art. No. 2214759. doi: 10.1002/adfm.202214759
    [21]
    Y. Ansari, B.K. Guo, J.H. Cho, et al., Low-cost, dendrite-blocking polymer–Sb2O3 separators for lithium and sodium batteries, J. Electrochem. Soc., 161(2014), No. 10, p. A1655. doi: 10.1149/2.0631410jes
    [22]
    L.P. Zhang, X.L. Li, M.R. Yang, and W.H. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective, Energy Storage Mater., 41(2021), p. 522. doi: 10.1016/j.ensm.2021.06.033
    [23]
    T.M. Zhu, X.X. Zuo, X.X. Lin, et al., High-wettability composite separator embedded with in situ grown TiO2 nanoparticles for advanced sodium-ion batteries, Energy Technol., 10(2022), No. 10, art. No. 2200409. doi: 10.1002/ente.202200409
    [24]
    D. Zhou, X.A. Tang, X. Guo, et al., Polyolefin-based Janus separator for rechargeable sodium batteries, Angew. Chem. Int. Ed., 59(2020), No. 38, p. 16725. doi: 10.1002/anie.202007008
    [25]
    X.H. Ma, F. Qiao, M.F. Qian, et al., Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium-ion batteries, Scripta Mater., 190(2021), p. 153. doi: 10.1016/j.scriptamat.2020.08.053
    [26]
    H.C. Gao, B.K. Guo, J. Song, K. Park, and J.B. Goodenough, A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries, Adv. Energy Mater, 5(2015), No. 9, art. No. 1402235. doi: 10.1002/aenm.201402235
    [27]
    J.I. Kim, Y. Choi, K.Y. Chung, and J.H. Park, A structurable gel–polymer electrolyte for sodium ion batteries, Adv. Funct. Mater., 27(2017), No. 34, art. No. 1701768. doi: 10.1002/adfm.201701768
    [28]
    P.C. Ani, P.U. Nzereogu, A.C. Agbogu, F.I. Ezema, and A.C. Nwanya, Cellulose from waste materials for electrochemical energy storage applications: A review, Appl. Surf. Sci. Adv., 11(2022), art. No. 100298. doi: 10.1016/j.apsadv.2022.100298
    [29]
    J.L. Yang, X.X. Zhao, W. Zhang, et al., Inside back cover: “pore-hopping” ion transport in cellulose-based separator towards high-performance sodium-ion batteries, Angew. Chem. Int. Ed., 62(2023), No. 15, art. No. 202302568. doi: 10.1002/anie.202302568
    [30]
    H.Y. Zhou, J. Gu, W.W. Zhang, C.S. Hu, and X.Y. Lin, Rational design of cellulose nanofibrils separator for sodium-ion batteries, Molecules, 26(2021), No. 18, art. No. 5539. doi: 10.3390/molecules26185539
    [31]
    T.W. Zhang, B. Shen, H.B. Yao, et al., Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries, Nano Lett., 17(2017), No. 8, p. 4894. doi: 10.1021/acs.nanolett.7b01875
    [32]
    C.Y. Cao, H.B. Wang, W.W. Liu, X.Z. Liao, and L. Li, Nafion membranes as electrolyte and separator for sodium-ion battery, Int. J. Hydrogen Energy, 39(2014), No. 28, p. 16110. doi: 10.1016/j.ijhydene.2013.12.119
    [33]
    V.C. Ho, B.T.D. Nguyen, H.Y.N. Thi, J.F. Kim, and J. Mun, Poly(dopamine) surface-modified polyethylene separator with electrolyte-philic characteristics for enhancing the performance of sodium-ion batteries, Int. J. Energy Res., 46(2022), No. 4, p. 5177. doi: doi.org/10.1002/er.7510
    [34]
    Y.S. Zhu, F.X. Wang, L.L. Liu, S.Y. Xiao, Y.Q. Yang, and Y.P. Wu, Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries, Sci. Rep., 3(2013), art. No. 3187. doi: 10.1038/srep03187
    [35]
    J.Y. Zheng, X.L. Liu, Y.L. Duan, et al., Stable cross-linked gel terpolymer electrolyte containing methyl phosphonate for sodium ion batteries, J. Membr. Sci., 583(2019), p. 163. doi: 10.1016/j.memsci.2019.04.044
    [36]
    X.H. Ma, Z.H. Zheng, T.W. Zhang, et al., Rational design of glass fiber-cellulose composite separator for sodium-ion batteries, Scripta Mater., 232(2023), art. No. 115481. doi: 10.1016/j.scriptamat.2023.115481
    [37]
    R. Arunkumar, A.P. Vijaya Kumar Saroja, and R. Sundara, Barium titanate-based porous ceramic flexible membrane as a separator for room-temperature sodium-ion battery, ACS Appl. Mater. Interfaces, 11(2019), No. 4, p. 3889. doi: 10.1021/acsami.8b17887
    [38]
    S. Janakiraman, A. Agrawal, R. Biswal, and A. Venimadhav, An amorphous polyvinylidene fluoride-co-hexafluoropropylene based gel polymer electrolyte for sodium-ion cells, Appl. Surf. Sci. Adv., 6(2021), art. No. 100139. doi: 10.1016/j.apsadv.2021.100139
    [39]
    D.N. Lei, Y.B. He, H.J. Huang, et al., Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery, Nat. Commun., 10(2019), No. 1, art. No. 4244. doi: 10.1038/s41467-019-11960-w
    [40]
    N. Mittal, S.A. Tien, E. Lizundia, and M. Niederberger, Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries, Small, 18(2022), No. 43, art. No. 2107183. doi: 10.1002/smll.202107183
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(951) PDF Downloads(73) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return