Quan Shi, Jue Tang,  and Mansheng Chu, Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1228-1240. https://doi.org/10.1007/s12613-023-2693-7
Cite this article as:
Quan Shi, Jue Tang,  and Mansheng Chu, Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1228-1240. https://doi.org/10.1007/s12613-023-2693-7
Research Article

Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators

+ Author Affiliations
  • Corresponding authors:

    Jue Tang    E-mail: tangj@smm.neu.edu.cn

    Mansheng Chu    E-mail: chums@smm.neu.edu.cn

  • Received: 27 March 2023Revised: 6 June 2023Accepted: 16 June 2023Available online: 17 June 2023
  • The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace (BF) system. In this work, a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed. The data on raw and fuel materials, process operation, smelting state, and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed. A novel method for the delay analysis of furnace heat indicators was established. The extracted delay variables were found to play an important role in modeling. The method that combined the genetic algorithm and stacking efficiently improved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model. The hit ratio for predicting the temperature of hot metal in the error range of ±10°C was 92.4%, and that for the chemical heat of hot metal in the error range of ±0.1wt% was 93.3%. On the basis of the furnace heat prediction model and expert experience, a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels. These suggestions were highly accepted by BF operators. Finally, the comprehensive and dynamic model proposed in this work was successfully applied in a practical BF system. It improved the BF temperature level remarkably, increasing the furnace temperature stability rate from 54.9% to 84.9%. This improvement achieved considerable economic benefits.
  • loading
  • [1]
    D. Pan, Z.H. Jiang, Z.P. Chen, W.H. Gui, Y.F. Xie, and C.H. Yang, Temperature measurement method for blast furnace molten iron based on infrared thermography and temperature reduction model, Sensors, 18(2018), No. 11, art. No. 3792. doi: 10.3390/s18113792
    [2]
    X. Liu, W.J. Zhang, Q. Shi, and L. Zhou, Operation parameters optimization of blast furnaces based on data mining and cleaning, J. Northeastern Univ. Nat. Sci., 41(2020), No. 8, p. 1153.
    [3]
    Z.N. Li, M.S. Chu, Z.G. Liu, G.J. Ruan, and B.F. Li, Furnace heat prediction and control model and its application to large blast furnace, High Temp. Mater. Process., 38(2019), p. 884. doi: 10.1515/htmp-2019-0049
    [4]
    X.J. Liu, Y. Deng, X. Li, L.Y. Hao, E.H. Liu, and Q. Lyu, Prediction of silicon content in hot molten of blast furnace based on bid data technology, China Metall., 31(2021), No. 2, p. 10.
    [5]
    M.S. Chu, J. Yagi, and F. Shen, Modelling on Blast Furnace Process and Innovative Ironmaking Technologies, Northeastern University Press, Shenyang, 2006, p.36.
    [6]
    X.G. Liu and F. Liu, Blast Furnace Ironmaking Process Optimization and Intelligent Control system, Metallurgy Industry Press, Beijing, 2003, p. 90.
    [7]
    Q. Shi, J. Tang, and M.S. Chu, Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1651. doi: 10.1007/s12613-023-2636-3
    [8]
    R.Y. Yin, Review on the study of metallurgical process engineering, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1253. doi: 10.1007/s12613-020-2220-z
    [9]
    Q. Shi, J. Tang, and M.S. Chu, Evaluation, prediction, and feedback of blast furnace hearth activity based on data-driven analysis and process metallurgy, Steel Res. Int., 95 (2024), art. No. 2300385. doi: 10.1002/srin.202300385
    [10]
    G.F. Pan, F.Y. Wang, C.L. Shang, et al., Advances in machine learning- and artificial intelligence-assisted material design of steels, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1003. doi: 10.1007/s12613-022-2595-0
    [11]
    R.H. Zhang and J. Yang, State of the art in applications of machine learning in steelmaking process modeling, Int. J. Miner. Metall. Mater., 30(2023), No. 11, . 2055. doi: 10.1007/s12613-023-2646-1
    [12]
    C.L. Huang, Y.L. Tang, X.F. Zhang, and Y.Z. Chu, Prediction and simulation of silicon content in blast furnace for PCA and PSO–ELM, Comput. Simul., 37(2020), No. 2, p. 398.
    [13]
    M. Yuan, P. Zhou, M.L. Li, R.F. Li, H. Wang, and T.Y. Chai, Intelligent multivariable modeling of blast furnace molten iron quality based on dynamic AGA-ANN and PCA, J. Iron Steel Res. Int., 22(2015), No. 6, p. 487. doi: 10.1016/S1006-706X(15)30031-5
    [14]
    P. Zhou, M. Yuan, H. Wang, Z. Wang, and T.Y. Chai, Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections, Inf. Sci., 325(2015), p. 237. doi: 10.1016/j.ins.2015.07.002
    [15]
    Z.Y. Wang, D.H. Jiang, X.D. Wang, J.L. Zhang, Z.J. Liu, and B.J. Zhao, Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine, Chin. J. Eng., 43(2021), No. 4, p. 569. doi: 10.13374/j.issn2095-9389.2020.05.28.001
    [16]
    J.P. Li, C.C. Hua, and X.P. Guan, Inputs screening of hot metal silicon content model on blast furnace, [in] 2017 Chinese Automation Congress (CAC ), Jinan, 2017, p. 3747.
    [17]
    Y. Deng and Q. Lyu, Establishment of evaluation and prediction system of comprehensive state based on big data technology in a commercial blast furnace, ISIJ Int., 60(2020), No. 5, p. 898. doi: 10.2355/isijinternational.ISIJINT-2019-545
    [18]
    P. Zhou, P. Dai, H.D. Song, and T.Y. Chai, Data-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmaking, IET Control Theory Appl., 11(2017), No. 14, p. 2343. doi: 10.1049/iet-cta.2016.1474
    [19]
    Y.R. Li and C.J. Yang, Domain knowledge based explainable feature construction method and its application in ironmaking process, Eng. Appl. Artif. Intell., 100(2021), art. No. 104197. doi: 10.1016/j.engappai.2021.104197
    [20]
    K. Jiang, Z.H. Jiang, Y.F. Xie, D. Pan, and W.H. Gui, Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network, IEEE Trans. Instrum. Meas., 71(2022), art. No. 2512114. doi: 10.1109/TIM.2022.3185325
    [21]
    J.P. Li, C.C. Hua, Y.N. Yang, and X.P. Guan, A novel MIMO T–S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputs, IEEE Trans. Fuzzy Syst., 29(2021), No. 6, p. 1654. doi: 10.1109/TFUZZ.2020.2983667
    [22]
    J.P. Li, C.C. Hua, and Y.N. Yang, A novel multiple-input–multiple-output random vector functional-link networks for predicting molten iron quality indexes in blast furnace, IEEE Trans. Ind. Electron., 68(2021), No. 11, p. 11309. doi: 10.1109/TIE.2020.3031525
    [23]
    J.P. Li, C.C. Hua, J.L. Qian, and X.P. Guan, Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace, Fuzzy Sets Syst., 421(2021), p. 178. doi: 10.1016/j.fss.2020.08.012
    [24]
    Z.N. Li, Prediction and Optimization of Key Process Parameters of Large Blast Furnace Based on Big Data Mining [Dissertation], Northeastern University, Shenyang, 2020, p. 27.
    [25]
    Y. Han, Z.B. Hu, A.M. Yang, J. Li, and Y.Z. Zhang, Intelligent recommendation model for reducing silicon deviation fluctuation of hot metal in BF and application, Iron Steel, 58(2023), p. 30. doi: 10.13228/j.boyuan.issn0449-749x.20220667
    [26]
    H.Y. Li, X.P. Bu, X.J. Liu, et al., Evaluation and prediction of blast furnace status based on big data platform of ironmaking and data mining, ISIJ Int., 61(2021), No. 1, p. 108. doi: 10.2355/isijinternational.ISIJINT-2020-249
    [27]
    J.L. Bai, J.L. Zhang, H.W. Guo, S. Du, and Y.J. Cao, Basic mathematical models in blast furnace expert system, J. Wuhan Univ. Sci. Technol., 36(2013), No. 5, p. 331.
    [28]
    J.L. Zhang, X.D. Jiang, H.B. Zuo, and Z.J. Liu, Heat state judgment for calcium carbide furnaces based on heat index calculation and furnace temperature prediction, Chin. J. Eng., 35(2013), No. 9, p. 1131. doi: 10.13374/j.issn1001-053x.2013.09.002
    [29]
    L. Wei, S.S. Yang, F. Zhang, and Q. Bai, A Mathematical model on prediction of hot metal silicon content and temperature using blast furnace hearth thermal state parameters, [in] Metallurgical Research Center 2005 Metallurgical Engineering Science Forum, Beijing, 2005, p. 62.
    [30]
    X.Q. Niu, Q.W. Ye, Y. Zhou, and X.D. Wang, Autoregressive model electroencephalogram signal identification based on feature selection of genetic algorithm, Comput. Eng., 42(2016), No. 3, p. 283.
    [31]
    Z.Q. Li, J.Q. Du, B. Nie, W.P. Xiong, C.Y. Huang, and H. Li, Summary of feature selection methods, Comput. Eng. Appl., 55(2019), No. 24, p. 10. doi: 10.3778/j.issn.1002-8331.1909-0066
    [32]
    H.B. Yu, Q.N. Zhu, L. Kang, G.Z. Qiao, and J.C. Zeng, A Multi-operator collaborative particle swarm optimization algorithm with biased roulette, Control Decis., 39(2024), No. 4, p. 1167. doi: 10.13195/j.kzyjc.2022.1486
    [33]
    J.W. Xu and Y. Yang, A survey of ensemble learning approaches, J. Yunnan Univ. Nat. Sci. Ed., 40(2018), No. 6, p. 1082. doi: 10.7540/j.ynu.20180455
    [34]
    Z.N. Li, M.S. Chu, Z.G. Liu, and B.F. Li, Prediction and optimization of blast furnace parameters based on machine learning and genetic algorithm, J. Northeastern Univ. Nat. Sci. Ed., 41(2020), No. 9, p. 1262. doi: 10.12068/j.issn.1005-3026.2020.09.008
    [35]
    Q. Feng, Q. Li, W. Quan, and X.M. Pei, Overview of multiobjective particle swarm optimization algorithm, Chin. J. Eng., 43(2021), No. 6, p. 745. doi: 10.13374/j.issn2095-9389.2020.10.31.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(536) PDF Downloads(52) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return