Qianqian Lu, Haisheng Han, Wenjuan Sun, Xingfei Zhang, Weiwei Wang, Bilan Zhang, Wensheng Chen, and Qin Zou, Preparation of high-purity fluorite and nanoscale calcium carbonate from low-grade fluorite, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2697-3
Cite this article as:
Qianqian Lu, Haisheng Han, Wenjuan Sun, Xingfei Zhang, Weiwei Wang, Bilan Zhang, Wensheng Chen, and Qin Zou, Preparation of high-purity fluorite and nanoscale calcium carbonate from low-grade fluorite, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2697-3
Research Article

Preparation of high-purity fluorite and nanoscale calcium carbonate from low-grade fluorite

+ Author Affiliations
  • Corresponding authors:

    Haisheng Han    E-mail: hanhai5086@csu.edu.cn

    Weiwei Wang    E-mail: viviw91@163.com

  • Received: 24 March 2023Revised: 25 June 2023Accepted: 27 June 2023Available online: 30 June 2023
  • Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate. A new acid leaching–flotation process for fluorite is proposed in this work. This innovative process raised the fluorite’s grade to 97.26% while producing nanoscale calcium carbonate from its leachate, which contained plenty of calcium ions. On the production of nanoscale calcium carbonate, the impacts of concentration, temperature, and titration rate were examined. By modifying the process conditions and utilizing crystal conditioning agents, calcite-type and amorphous calcium carbonates with corresponding particle sizes of 1.823 and 1.511 μm were produced. The influence of the impurity ions Mn2+, Mg2+, and Fe3+ was demonstrated to reduce the particle size of nanoscale calcium carbonate and make crystal shape easier to manage in the fluorite leach solution system compared with the calcium chloride solution. The combination of the acid leaching–flotation process and the nanoscale calcium carbonate preparation method improved the grade of fluorite while recovering calcite resources, thus presenting a novel idea for the effective and clean usage of low-quality fluorite resources with embedded microfine particles.
  • loading
  • [1]
    T.T. Basiev, M.E. Doroshenko, V.A. Konyushkin, et al., Fluoride optical nanoceramics, Russ. Chem. Bull., 57(2008), No. 5, p. 877. doi: 10.1007/s11172-008-0125-5
    [2]
    W.H. Kan and V. Thangadurai, Challenges and prospects of anodes for solid oxide fuel cells (SOFCs), Ionics, 21(2015), No. 2, p. 301. doi: 10.1007/s11581-014-1334-6
    [3]
    F.A. Shah, Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments, Mater. Sci. Eng. C, 58(2016), p. 1279. doi: 10.1016/j.msec.2015.08.064
    [4]
    D. Němec, Fluorine in lamprophyre and lamproid rocks, Geochim. Cosmochim. Acta, 32(1968), No. 5, p. 523. doi: 10.1016/0016-7037(68)90043-4
    [5]
    V.A. Sadykov, M.N. Simonov, Y.N. Bespalko, et al., Design and characterization of nanocomposite catalysts for biofuel conversion into syngas and hydrogen in structured reactors and membranes, Kinet. Catal., 60(2019), No. 5, p. 582. doi: 10.1134/S0023158419050082
    [6]
    C.B. Shi, J.W. Cho, D.L. Zheng, and J. Li, Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 627. doi: 10.1007/s12613-016-1275-3
    [7]
    R.F. Sun, Effect and Mechanism of Metal Ions on Calcite Inhibitors in Fluorite Flotation System [Dissertation], Kunming University of Science and Technology, Kunming, 2022, p. 12.
    [8]
    Z.Y. Gao, C. Wang, W. Sun, Y.S. Gao, and P.B. Kowalczuk, Froth flotation of fluorite: A review, Adv. Colloid Interface Sci., 290(2021), art. No. 102382. doi: 10.1016/j.cis.2021.102382
    [9]
    H.P. Zhou, Z.Z. Yang, Y.B. Zhang, F.X. Xie, and X.P. Luo, Flotation separation of smithsonite from calcite by using flaxseed gum as depressant, Miner. Eng., 167(2021), art. No. 106904. doi: 10.1016/j.mineng.2021.106904
    [10]
    J.W. Huang, Q.W. Zhang, H.C. Li, and C. Wang, Difficulties and recent achievements in flotation separation of fluorite from calcite—An overview, Minerals, 12(2022), No. 8, art. No. 957. doi: 10.3390/min12080957
    [11]
    R.L. Wang, H.S. Han, W. Sun, A.V. Nguyen, W.J. Sun, and Z. Wei, Hydrophobic behavior of fluorite surface in strongly alkaline solution and its application in flotation, Colloids Surf. A: Physicochem. Eng. Aspects, 609(2021), art. No. 125661. doi: 10.1016/j.colsurfa.2020.125661
    [12]
    D.Q. Wang, D. Liu, Y.B. Mao, R.F. Sun, R.T. Liu, and S.M. Wen, Effect of fluoride ion on the separation of fluorite from calcite using flotation with acidified water glass, Minerals, 11(2021), No. 11, art. No. 1203. doi: 10.3390/min11111203
    [13]
    Q.Q. Lin, G.H. Gu, H. Wang, R.F. Zhu, Y.C. Liu, and J.G. Fu, Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 491. doi: 10.1007/s12613-016-1260-x
    [14]
    S.M. El-Sheikh and M.A. Rabah, Optical properties of calcium chromate 1D-nanorods synthesized at low temperature from secondary resources, Opt. Mater., 37(2014), p. 235. doi: 10.1016/j.optmat.2014.05.034
    [15]
    X.P. Luo, X.W. Song, Y.W. Cao, L. Song, and X.Z. Bu, Investigation of calcium carbonate synthesized by steamed ammonia liquid waste without use of additives, RSC Adv., 10(2020), No. 13, p. 7976. doi: 10.1039/C9RA10460G
    [16]
    I. Korkut, A. Civas, and M. Bayramoglu, Effects of ultrasound and process parameters on the precipitation of CaCO3 polymorphs from synthetic soda ash industry liquid waste, Chem. Eng. Process., 168(2021), art. No. 108584. doi: 10.1016/j.cep.2021.108584
    [17]
    J.S. Han, S.Y. Jung, D.S. Kang, and Y.B. Seo, Development of flexible calcium carbonate for papermaking filler, ACS Sustainable Chem. Eng., 8(2020), No. 24, p. 8994. doi: 10.1021/acssuschemeng.0c01593
    [18]
    W. Wu, X.Q. Zhang, J.F. Chen, and S.L. Shen, Synthesis of nano-CaCO3 composite particles and their application, J. Univ. Sci. Technol. Beijing: Miner. Metall. Mater., 15(2008), No. 1, p. 67.
    [19]
    Q.Y. Wang, The application of nano-calcium carbonate in the technology of improving road petroleum asphalt, Adv. Mater. Sci. Eng., 2022(2022), art. No. 4636049.
    [20]
    H. Lin, Y.B. Dong, and L.Y. Jiang, Preparation of calcium carbonate particles coated with titanium dioxide, Int. J. Miner. Metall. Mater., 16(2009), No. 5, p. 592. doi: 10.1016/S1674-4799(09)60102-3
    [21]
    X.Y. Zhou, R. Yu, J.H. Jiang, et al., PEEK composite resin with enhanced intumescent flame retardancy loaded with Octaphenylsilsesquioxane and nano calcium carbonate and its application in fibers, Polym. Degrad. Stab., 202(2022), art. No. 110042. doi: 10.1016/j.polymdegradstab.2022.110042
    [22]
    C.C. Zeng, H.M. Hu, X.H. Feng, K. Wang, and Q.W. Zhang, Activating CaCO3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings, Chemosphere, 249(2020), art. No. 126227. doi: 10.1016/j.chemosphere.2020.126227
    [23]
    Y. Chang, H.J. Han, T.T. Liu, et al., Cell-tailored calcium carbonate particles with different crystal forms from nanoparticle to nano/microsphere, RSC Adv., 10(2020), No. 70, p. 43233. doi: 10.1039/D0RA07393H
    [24]
    L.T. Kang, M.W. Cui, F.Y. Jiang, et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801090. doi: 10.1002/aenm.201801090
    [25]
    A.S.A. Mohammed, A. Carino, A. Testino, M.R. Andalibi, and A. Cervellino, In situ liquid SAXS studies on the early stage of calcium carbonate formation, Part. Part. Syst. Char., 36(2019), No. 6, art. No. 1800482. doi: 10.1002/ppsc.201800482
    [26]
    B. Wang, Z.H. Pan, H.G. Cheng, Z.E. Zhang, and F.Q. Cheng, A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum, J. Cleaner Prod., 302(2021), art. No. 126930. doi: 10.1016/j.jclepro.2021.126930
    [27]
    Y. Wei, H. Xu, S.M. Xu, et al., Synthesis and characterization of calcium carbonate on three kinds of microbial cells templates, J. Cryst. Growth, 547(2020), art. No. 125755. doi: 10.1016/j.jcrysgro.2020.125755
    [28]
    A. Katsman, I. Polishchuk, and B. Pokroy, On the mechanism of calcium carbonate polymorph selection via confinement, Faraday Discuss., 235(2022), p. 433. doi: 10.1039/D1FD00111F
    [29]
    M. Ma, Y.H. Wang, X.F. Cao, W.P. Lu, and Y.C. Guo, Temperature and supersaturation as key parameters controlling the spontaneous precipitation of calcium carbonate with distinct physicochemical properties from pure aqueous solutions, Cryst. Growth Des., 19(2019), No. 12, p. 6972. doi: 10.1021/acs.cgd.9b00758
    [30]
    J. Wang, J.Z. Song, Z.Y. Ji, et al., The preparation of calcium carbonate with different morphologies under the effect of alkanolamide 6502, Colloids Surf., A, 588(2020), art. No. 124392. doi: 10.1016/j.colsurfa.2019.124392
    [31]
    X.H. Mei, Q. Zhao, Y.M. Li, et al., Phase transition and morphology evolution of precipitated calcium carbonate (PCC) in the CO2 mineralization process, Fuel, 328(2022), art. No. 125259. doi: 10.1016/j.fuel.2022.125259
    [32]
    A. Korchef and M. Touaibi, Effect of pH and temperature on calcium carbonate precipitation by CO2 removal from iron-rich water, Water Environ. J., 34(2020), No. 3, p. 331. doi: 10.1111/wej.12467
    [33]
    A. Korchef, Effect of iron ions on the crystal growth kinetics and microstructure of calcium carbonate, Cryst. Growth Des., 19(2019), No. 12, p. 6893. doi: 10.1021/acs.cgd.9b00503
    [34]
    F. Konrad, B. Purgstaller, F. Gallien, V. Mavromatis, P. Gane, and M. Dietzel, Influence of aqueous Mg concentration on the transformation of amorphous calcium carbonate, J. Cryst. Growth, 498(2018), p. 381. doi: 10.1016/j.jcrysgro.2018.07.018
    [35]
    V.V. Goncharuk, V.A. Bagrii, S.Y. Bashtan, R.D. Chebotareva, and A.V. Nanieva, Crystalization of calcium carbonate in magnetized water in the presence of ions of iron and manganese, J. Water Chem. Technol., 33(2011), No. 3, p. 160. doi: 10.3103/S1063455X11030052
    [36]
    C.G. Kontoyannis and N.V. Vagenas, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst, 125(2000), No. 2, p. 251. doi: 10.1039/a908609i
    [37]
    A. Gomez-Flores, G.W. Heyes, S. Ilyas, and H. Kim, Prediction of grade and recovery in flotation from physicochemical and operational aspects using machine learning models, Miner. Eng., 183(2022), art. No. 107627. doi: 10.1016/j.mineng.2022.107627
    [38]
    R. Ševčík, M. Pérez-Estébanez, A. Viani, P. Šašek, and P. Mácová, Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives, Powder Technol., 284(2015), p. 265. doi: 10.1016/j.powtec.2015.06.064
    [39]
    X. Xia, J.W. Chen, J. Shen, D. Huang, P.Z. Duan, and G.H. Zou, Synthesis of hollow structural hydroxyapatite with different morphologies using calcium carbonate as hard template, Adv. Powder Technol., 29(2018), No. 7, p. 1562. doi: 10.1016/j.apt.2018.03.021
    [40]
    N. Mehta, J. Gaëtan, P. Giura, T. Azaïs, and K. Benzerara, Detection of biogenic amorphous calcium carbonate (ACC) formed by bacteria using FTIR spectroscopy, Spectrochim. Acta, Part A, 278(2022), art. No. 121262. doi: 10.1016/j.saa.2022.121262
    [41]
    J.T. Avaro, C. Ruiz-Agudo, E. Landwehr, K. Hauser, and D. Gebauer, Impurity-free amorphous calcium carbonate, a preferential material for pharmaceutical and medical applications, Eur. J. Mineral., 31(2019), No. 2, p. 231. doi: 10.1127/ejm/2019/0031-2831
    [42]
    J.R. Goldsmith and H.C. Heard, Subsolidus phase relations in the system CaCO3-MgCO3, J. Geol., 69(1961), No. 1, p. 45. doi: 10.1086/626715
    [43]
    T.Y. Chen, S. Honarparvar, D. Reible, and C.C. Chen, Thermodynamic modeling of calcium carbonate scale precipitation: Aqueous Na+-Ca2+-Cl-HCO3-CO32–-CO2 system, Fluid Phase Equilib., 552(2022), art. No. 113263. doi: 10.1016/j.fluid.2021.113263
    [44]
    P. Bénézeth, J.L. Dandurand, and J.C. Harrichoury, Solubility product of siderite (FeCO3) as a function of temperature (25–250°C), Chem. Geol., 265(2009), No. 1-2, p. 3. doi: 10.1016/j.chemgeo.2009.03.015
    [45]
    K.S. Johnson, Solubility of rhodochrosite (MnCO3) in water and seawater, Geochim. Cosmochim. Acta, 46(1982), No. 10, p. 1805. doi: 10.1016/0016-7037(82)90119-3
    [46]
    J.A. Dean, Lange's Handbook of Chemistry, McGraw-Hill Professional Publishing, New York, 1985.
    [47]
    J.V. Mills, H.A. Barnhart, D.J. DePaolo, and L.N. Lammers, New insights into Mn2+ and Mg2+ inhibition of calcite growth, Geochim. Cosmochim. Acta, 334(2022), p. 338. doi: 10.1016/j.gca.2022.06.015
    [48]
    E.J. Zeller and J.L. Wray, Factors influencing precipitation of calcium carbonate, AAPG Bull., 40(1956), No. 1, p. 140.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(8)

    Share Article

    Article Metrics

    Article Views(210) PDF Downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return