Cite this article as: |
Thongsuk Sichumsaeng, Atchara Chinnakorn, Ornuma Kalawa, Jintara Padchasri, Pinit Kidkhunthod, and Santi Maensiri, Comparative structural and electrochemical properties of mixed P2/O′3-layered sodium nickel manganese oxide prepared by sol–gel and electrospinning methods: Effect of Na-excess content, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1887-1896. https://doi.org/10.1007/s12613-023-2702-x |
Santi Maensiri E-mail: santimaensiri@gmail.com
Supplementary Information-10.1007s12613-023-2702.docx |
[1] |
Z. Cheng, H. Pan, F. Li, et al., Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy, Nat. Commun., 13(2022), art. No. 125. doi: 10.1038/s41467-021-27728-0
|
[2] |
H.H. Sun, U.H. Kim, J.H. Park, et al., Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries, Nat. Commun., 12(2021), art. No. 6552. doi: 10.1038/s41467-021-26815-6
|
[3] |
M.Z. Chen, Y.Y. Zhang, G.C. Xing, and Y.X. Tang, Building high power density of sodium-ion batteries: Importance of multidimensional diffusion pathways in cathode materials, Front. Chem., 8(2020), art. No. 152. doi: 10.3389/fchem.2020.00152
|
[4] |
K. Liu, Y.Y. Liu, D.C. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety, Sci. Adv., 4(2018), No. 6, art. No. eaas9820. doi: 10.1126/sciadv.aas9820
|
[5] |
L.N. Chen, Y.M. Zhang, C.Y. Hao, et al., Interlayer engineering of KxMnO2 enables superior alkali metal ion storage for advanced hybrid capacitors, ChemElectroChem, 9(2022), No. 12, art. No. e202200059. doi: 10.1002/celc.202200059
|
[6] |
Z.N. Tian, Y.G. Zou, G. Liu, Y.Z. Wang, J. Yin, J. Ming, and H.N. Alshareef, Electrolyte solvation structure design for sodium ion batteries, Adv. Sci., 9(2022), No. 22, art. No. 2201207. doi: 10.1002/advs.202201207
|
[7] |
E. Gonzalo, M. Zarrabeitia, N.E. Drewett, J.M. López del Amo, and T. Rojo, Sodium manganese-rich layered oxides: Potential candidates as positive electrode for Sodium-ion batteries, Energy Storage Mater., 34(2021), p. 682. doi: 10.1016/j.ensm.2020.10.010
|
[8] |
S. Biswas, A. Chowdhury, and A. Chandra, Performance of Na-ion supercapacitors under non-ambient conditions—From temperature to magnetic field dependent variation in specific capacitance, Front. Mater., 6(2019), art. No. 54. doi: 10.3389/fmats.2019.00054
|
[9] |
A. Chowdhury, S. Biswas, D. Mandal, and A. Chandra, Facile strategy of using conductive additive supported NaMnPO4 nanoparticles for delivering high performance Na-ion supercapacitors, J. Alloys Compd., 902(2022), art. No. 163733. doi: 10.1016/j.jallcom.2022.163733
|
[10] |
W.N. Xu, J. Wan, W.C. Huo, et al., Sodium ions pre-intercalation stabilized tunnel structure of Na2Mn8O16 nanorods for supercapacitors with long cycle life, Chem. Eng. J., 354(2018), p. 1050. doi: 10.1016/j.cej.2018.08.033
|
[11] |
P. Simon and Y. Gogotsi, Perspectives for electrochemical capacitors and related devices, Nat. Mater., 19(2020), No. 11, p. 1151. doi: 10.1038/s41563-020-0747-z
|
[12] |
Q.H. Shi, R.J. Qi, X.C. Feng, et al., Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries, Nat. Commun., 13(2022), art. No. 3205. doi: 10.1038/s41467-022-30942-z
|
[13] |
B. Hu, F.S. Geng, C. Zhao, et al., Deciphering the origin of high electrochemical performance in a novel Ti-substituted P2/O3 biphasic cathode for sodium-ion batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41485. doi: 10.1021/acsami.0c11427
|
[14] |
K.Z. Jiang, X.P. Zhang, H.Y. Li, et al., Suppressed the high-voltage phase transition of P2-type oxide cathode for high-performance sodium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 16, p. 14848. doi: 10.1021/acsami.9b03326
|
[15] |
M. Keller, D. Buchholz, and S. Passerini, Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases, Adv. Energy Mater., 6(2016), No. 3, art. No. 1501555. doi: 10.1002/aenm.201501555
|
[16] |
Z.G. Liu, K.Z. Jiang, S.Y. Chu, et al., Integrating P2 into O′3 toward a robust Mn-based layered cathode for sodium-ion batteries, J. Mater. Chem. A, 8(2020), No. 45, p. 23820. doi: 10.1039/D0TA08383F
|
[17] |
G.K. Veerasubramani, Y. Subramanian, M.S. Park, et al., Enhanced sodium-ion storage capability of P2/O3 biphase by Li-ion substitution into P2-type Na0.5Fe0.5Mn0.5O2 layered cathode, Electrochim. Acta, 296(2019), p. 1027. doi: 10.1016/j.electacta.2018.11.160
|
[18] |
S.H. Guo, P. Liu, H.J. Yu, et al., A layered P2- and O3-Type composite as a high-energy cathode for rechargeable sodium-ion batteries, Angew. Chem., 127(2015), No. 20, p. 5992. doi: 10.1002/ange.201411788
|
[19] |
F. Fu, X. Liu, X.G. Fu, et al., Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries, Nat. Commun., 13(2022), art. No. 2826. doi: 10.1038/s41467-022-30113-0
|
[20] |
B. Pandit, S.R. Rondiya, N.Y. Dzade, et al., High stability and long cycle life of rechargeable sodium-ion battery using manganese oxide cathode: A combined density functional theory (DFT) and experimental study, ACS Appl. Mater. Interfaces, 13(2021), No. 9, p. 11433. doi: 10.1021/acsami.0c21081
|
[21] |
B. Qiu, J. Wang, Y.G. Xia, et al., Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials, J. Power Sources, 240(2013), p. 530. doi: 10.1016/j.jpowsour.2013.04.047
|
[22] |
Q. Huang, P.G. He, L. Xiao, et al., Effect of sodium content on the electrochemical performance of Li-substituted, manganese-based, sodium-ion layered oxide cathodes, ACS Appl. Mater. Interfaces, 12(2020), No. 2, p. 2191. doi: 10.1021/acsami.9b12984
|
[23] |
L.F. Yang, C. Chen, S. Xiong, et al., Multiprincipal component P2-Na0.6(Ti0.2Mn0.2Co0.2Ni0.2Ru0.2)O2 as a high-rate cathode for sodium-ion batteries, JACS Au, 1(2021), No. 1, p. 98. doi: 10.1021/jacsau.0c00002
|
[24] |
D.D. Yuan, Y.X. Wang, Y.L. Cao, X.P. Ai, and H.X. Yang, Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 16, p. 8585. doi: 10.1021/acsami.5b00594
|
[25] |
V. Petříček, M. Dušek, and L. Palatinus, Crystallographic computing system JANA2006: General features, Z. Kristallogr., 229(2014), No. 5, p. 345.
|
[26] |
L.F. Pfeiffer, N. Jobst, C. Gauckler, et al., Layered P2-NaxMn3/4Ni1/4O2 cathode materials for sodium-ion batteries: Synthesis, electrochemistry and influence of ambient storage, Front. Energy Res., 10(2022), art. No. 910842. doi: 10.3389/fenrg.2022.910842
|
[27] |
C.J. Zhou, L.C. Yang, C.G. Zhou, et al., Co-substitution enhances the rate capability and stabilizes the cyclic performance of O3-Type cathode NaNi0.45–xMn0.25Ti0.3CoxO2 for sodium-ion storage at high voltage, ACS Appl. Mater. Interfaces, 11(2019), No. 8, p. 7906. doi: 10.1021/acsami.8b17945
|
[28] |
Z.J. Huang, Z.X. Wang, X.B. Zheng, et al., Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2−xMgxO2 for lithium ion batteries, RSC Adv., 5(2015), No. 108, p. 88773. doi: 10.1039/C5RA16633K
|
[29] |
L.G. Wang, J.J. Wang, X.Y. Zhang, et al., Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries, Nano Energy, 34(2017), p. 215. doi: 10.1016/j.nanoen.2017.02.046
|
[30] |
R.B. Dang, M.M. Chen, Q. Li, et al., Na+-conductive Na2Ti3O7-modified P2-type Na2/3Ni1/3Mn2/3O2 via a smart in situ coating approach: Suppressing Na+/vacancy ordering and P2–O2 phase transition, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 856. doi: 10.1021/acsami.8b17976
|
[31] |
G.X. Wang, W. Xiao, and J.G. Yu, High-efficiency dye-sensitized solar cells based on electrospun TiO2 multi-layered composite film photoanodes, Energy, 86(2015), p. 196. doi: 10.1016/j.energy.2015.03.127
|
[32] |
F. Zhang, H.C. Liu, Z.F. Wu, et al., Polyacrylamide gel-derived nitrogen-doped carbon foam yields high performance in supercapacitor electrodes, ACS Appl. Energy Mater., 4(2021), No. 7, p. 6719. doi: 10.1021/acsaem.1c00777
|
[33] |
T. Risthaus, L.F. Chen, J. Wang, et al., P3 Na0.9Ni0.5Mn0.5O2 cathode material for sodium ion batteries, Chem. Mater., 31(2019), No. 15, p. 5376. doi: 10.1021/acs.chemmater.8b03270
|
[34] |
L.Q. Mai, H. Li, Y.L. Zhao, et al., Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor, Sci. Rep., 3(2013), art. No. 1718. doi: 10.1038/srep01718
|
[35] |
A. Singh and A. Chandra, Enhancing specific energy and power in asymmetric supercapacitors - A synergetic strategy based on the use of redox additive electrolytes, Sci. Rep., 6(2016), art. No. 25793. doi: 10.1038/srep25793
|
[36] |
S. Birgisson, T.L. Christiansen, and B.B. Iversen, Exploration of phase compositions, crystal structures, and electrochemical properties of NaxFeyMn1–yO2 sodium ion battery materials, Chem. Mater., 30(2018), No. 19, p. 6636. doi: 10.1021/acs.chemmater.8b01566
|
[37] |
M.D. Jiang, G.N. Qian, X.Z. Liao, et al., Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling, J. Energy Chem., 69(2022), p. 16. doi: 10.1016/j.jechem.2022.01.010
|
[38] |
Q.L. Fan, K.J. Lin, S.D. Yang, et al., Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control, J. Power Sources, 477(2020), art. No. 228745. doi: 10.1016/j.jpowsour.2020.228745
|
[39] |
Y.J. Zhang, K. Du, Y.B. Cao, et al., Hydrothermal preparing agglomerate LiNi0.8Co0.1Mn0.1O2 cathode material with submicron primary particle for alleviating microcracks, J. Power Sources, 477(2020), art. No. 228701. doi: 10.1016/j.jpowsour.2020.228701
|