Xiufeng Gong, Jin Yao, Jun Guo, Bin Yang, Haoran Sun, Wanzhong Yin, Yulian Wang, and Yafeng Fu, Role of tannin pretreatment in flotation separation of magnesite and dolomite, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 452-461. https://doi.org/10.1007/s12613-023-2708-4
Cite this article as:
Xiufeng Gong, Jin Yao, Jun Guo, Bin Yang, Haoran Sun, Wanzhong Yin, Yulian Wang, and Yafeng Fu, Role of tannin pretreatment in flotation separation of magnesite and dolomite, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 452-461. https://doi.org/10.1007/s12613-023-2708-4
Research Article

Role of tannin pretreatment in flotation separation of magnesite and dolomite

+ Author Affiliations
  • Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem. Recently, new regulators have been proposed for magnesite flotation decalcification, although traditional regulators such as tannin, water glass, sodium carbonate, and sodium hexametaphosphate are more widely used in industry. However, they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests. Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing, we used a tannin pretreatment method for separating magnesite and dolomite. Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite. Moreover, the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased, respectively, in the presence of NaOl. Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface. X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.
  • loading
  • Supplementary Information-s12613-023-2708-4.docx
  • [1]
    C.L. Adam, R.G. Hemingway, and N.S. Ritchie, Influence of manufacturing conditions on the bioavailability of magnesium in calcined magnesites measured in vivo and in vitro , J. Agric. Sci., 127(1996), No. 3, p. 377.
    [2]
    C. Aksel, F. Kasap, and A. Sesver, Investigation of parameters affecting grain growth of sintered magnesite refractories, Ceram. Int., 31(2005), No. 1, p. 121. doi: 10.1016/j.ceramint.2004.03.046
    [3]
    S.M. Aleksandrov and V.G. Senin, Genesis, composition, and evolution of sulfide mineralization in magnesian skarns, Geochem. Int., 43(2005), No. 6, p. 559.
    [4]
    M. Guo, Q. Li, H.N. Liu, et al., The exploitation and utilization of magnesium resources in salt lakes, Prog. Chem., 21(2009), No. 11, p. 2358.
    [5]
    J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
    [6]
    D. Wonyen, V. Kromah, B. Gibson, S. Nah, and S. Chelgani, A review of flotation separation of Mg carbonates (dolomite and magnesite), Minerals, 8(2018), No. 8, art. No. 354. doi: 10.3390/min8080354
    [7]
    Z.Y. Chang, S.S. Niu, Z.C. Shen, L.C. Zou, and H.J. Wang, Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1244. doi: 10.1007/s12613-023-2615-8
    [8]
    Z.L. Zhu, Y.F. Fu, W.Z. Yin, et al., Role of surface roughness in the magnesite flotation and its mechanism, Particuology, 62(2022), p. 63. doi: 10.1016/j.partic.2021.06.007
    [9]
    H.R. Sun, F. Han, W.Z. Yin, J. Hong, and B. Yang, Modification of selectivity in the flotation separation of magnesite from dolomite, Colloids Surf. A: Physicochem. Eng. Aspects, 606(2020), art. No. 125460. doi: 10.1016/j.colsurfa.2020.125460
    [10]
    Y.F. Fu, Y. Hou, R. Wang, et al., Detailed insights into improved chlorite removal during hematite reverse flotation by sodium alginate, Miner. Eng., 173(2021), art. No. 107191. doi: 10.1016/j.mineng.2021.107191
    [11]
    M.Y. Li, C. Yang, Z.Y. Wu, et al., Selective depression action of taurine in flotation separation of specularite and chlorite, Int. J. Min. Sci. Technol., 32(2022), No. 3, p. 637. doi: 10.1016/j.ijmst.2022.03.006
    [12]
    B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697. doi: 10.1007/s12613-021-2313-3
    [13]
    A. Bastrzyk, I. Polowczyk, Z. Sadowski, and A. Sikora, Relationship between properties of oil/water emulsion and agglomeration of carbonate minerals, Sep. Purif. Technol., 77(2011), No. 3, p. 325. doi: 10.1016/j.seppur.2011.01.001
    [14]
    Q. Dehaine, L.O. Filippov, I.V. Filippova, L.T. Tijsseling, and H.J. Glass, Novel approach for processing complex carbonate-rich copper–cobalt mixed ores via reverse flotation, Miner. Eng., 161(2021), art. No. 106710. doi: 10.1016/j.mineng.2020.106710
    [15]
    D. Li, W.Z. Yin, J.W. Xue, J. Yao, Y.F. Fu, and Q. Liu, Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 736. doi: 10.1007/s12613-017-1457-7
    [16]
    X. Liu, C.X. Li, H.H. Luo, R.J. Cheng, and F.Y. Liu, Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector, Int. J. Miner. Process., 165(2017), p. 20. doi: 10.1016/j.minpro.2017.06.004
    [17]
    M.P. Majewska, R. Miltko, G. Bełżecki, A. Kędzierska, and B. Kowalik, Comparison of the effect of synthetic (tannic acid) or natural (oak bark extract) hydrolysable tannins addition on fatty acid profile in the rumen of sheep, Animals, 12(2022), No. 6, art. No. 699. doi: 10.3390/ani12060699
    [18]
    J. Yao, H.R. Sun, X.Q. Ban, and W.Z. Yin, Analysis of selective modification of sodium dihydrogen phosphate on surfaces of magnesite and dolomite: Reverse flotation separation, adsorption mechanism, and density functional theory calculations, Colloids Surf. A: Physicochem. Eng. Aspects, 618(2021), art. No. 126448. doi: 10.1016/j.colsurfa.2021.126448
    [19]
    W.Z. Yin, H.R. Sun, J. Hong, et al., Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite, Miner. Eng., 144(2019), art. No. 106050. doi: 10.1016/j.mineng.2019.106050
    [20]
    J. Yao, B. Yang, K.Q. Chen, et al., Sodium tripolyphosphate as a selective depressant for separating magnesite from dolomite and its depression mechanism, Powder Technol., 382(2021), p. 244. doi: 10.1016/j.powtec.2020.12.040
    [21]
    Y.G. Zhu, L.F. Yang, X.X. Hu, X.R. Zhang, and G.B. Zheng, Flotation separation of quartz from magnesite using carboxymethyl cellulose as depressant, Trans. Nonferrous Met. Soc. China, 32(2022), No. 5, p. 1623. doi: 10.1016/S1003-6326(22)65898-9
    [22]
    H. Han, A. Liu, C.L. Wang, R.Q. Yang, S. Li, and H.F. Wang, Flotation kinetics performance of different coal size fractions with nanobubbles, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1502. doi: 10.1007/s12613-021-2280-8
    [23]
    H.R. Sun, B. Yang, Z.L. Zhu, et al., New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model, Miner. Eng., 160(2021), art. No. 106660. doi: 10.1016/j.mineng.2020.106660
    [24]
    B. Yang, D.H. Wang, S.H. Cao, et al., Selective adsorption of a high-performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite, J. Colloid Interface Sci., 578(2020), p. 290. doi: 10.1016/j.jcis.2020.05.100
    [25]
    C.H. Zhang, S. Wei, Y.H. Hu, et al., Selective adsorption of tannic acid on calcite and implications for separation of fluorite minerals, J. Colloid Interface Sci., 512(2018), p. 55. doi: 10.1016/j.jcis.2017.10.043
    [26]
    G.L. Chen and D. Tao, Reverse flotation of magnesite by dodecyl phosphate from dolomite in the presence of sodium silicate, Sep. Sci. Technol., 39(2005), No. 2, p. 377. doi: 10.1081/SS-120027564
    [27]
    W.B. Liu, W.X. Huang, F. Rao, Z.L. Zhu, Y.M. Zheng, and S.M. Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 446. doi: 10.1007/s12613-021-2321-3
    [28]
    G.A. Oliveira, Ê.L. Machado, R.S. Knoll, N. Dell'Osbel, G.S. Colares, and L.R. Rodrigues, Combined system for wastewater treatment: Ozonization and coagulation via tannin-based agent for harvesting microalgae by dissolved air flotation, Environ. Technol., 43(2022), No. 9, p. 1370. doi: 10.1080/09593330.2020.1830181
    [29]
    M. Murugananthan, G. Bhaskar Raju, and S. Prabhakar, Removal of tannins and polyhydroxy phenols by electro-chemical techniques, J. Chem. Technol. Biotechnol., 80(2005), No. 10, p. 1188. doi: 10.1002/jctb.1314
    [30]
    J.H. Chen, Y.Q. Li, Q.R. Long, Z.W. Wei, and Y. Chen, Improving the selective flotation of jamesonite using tannin extract, Int. J. Miner. Process., 100(2011), No. 1-2, p. 54. doi: 10.1016/j.minpro.2011.04.010
    [31]
    P.E. Sarquís, J.M. Menéndez-Aguado, M.M. Mahamud, and R. Dzioba, Tannins: The organic depressants alternative in selective flotation of sulfides, J. Clean. Prod., 84(2014), p. 723. doi: 10.1016/j.jclepro.2014.08.025
    [32]
    Z.H. Shen, S.M. Wen, H. Wang, et al., Effect of dissolved components of malachite and calcite on surface properties and flotation behavior, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1297. doi: 10.1007/s12613-023-2606-9
    [33]
    J. Yao, H.R. Sun, F. Han, et al., Enhancing selectivity of modifier on magnesite and dolomite surfaces by pH control, Powder Technol., 362(2020), p. 698. doi: 10.1016/j.powtec.2019.12.040
    [34]
    B. Yang, H.R. Sun, D.H. Wang, et al., Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation, Sep. Purif. Technol., 250(2020), art. No. 117278. doi: 10.1016/j.seppur.2020.117278
    [35]
    E. Gülcan and Ö.Y. Gülsoy, Performance evaluation of optical sorting in mineral processing—A case study with quartz, magnesite, hematite, lignite, copper and gold ores, Int. J. Miner. Process., 169(2017), p. 129. doi: 10.1016/j.minpro.2017.11.007
    [36]
    H. Yilmaz Atay and M. Çirak, Separation of huntite and hydromagnesite from magnesite in combination of physicochemical treatment and size reduction, Ain Shams Eng. J., 10(2019), No. 1, p. 113. doi: 10.1016/j.asej.2018.05.003
    [37]
    L.L. Godirilwe, R.S. Magwaneng, R. Sagami, et al., Extraction of copper from complex carbonaceous sulfide ore by direct high-pressure leaching, Miner. Eng., 173(2021), art. No. 107181. doi: 10.1016/j.mineng.2021.107181
    [38]
    T.C. Wang, G.J. Sun, J.S. Deng, et al., A depressant for marmatite flotation: Synthesis, characterisation and floatation performance, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1048. doi: 10.1007/s12613-022-2586-1
    [39]
    X.F. Gong, J. Yao, B. Yang, J. Guo, H.R. Sun, and W.Z. Yin, Study on the inhibition mechanism of guar gum in the flotation separation of brucite and dolomite in the presence of SDS, J. Mol. Liq., 380(2023), art. No. 121721. doi: 10.1016/j.molliq.2023.121721
    [40]
    J.W. Xue, H.Z. Tu, J. Shi, Y.N. An, H. Wan, and X.Z. Bu, Enhanced inhibition of talc flotation using acidified sodium silicate and sodium carboxymethyl cellulose as the combined inhibitor, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1310. doi: 10.1007/s12613-022-2582-5
    [41]
    L.P. Luo, L.H. Xu, X.Z. Shi, J.P. Meng, and R.H. Liu, Microscale insights into the influence of grinding media on spodumene micro-flotation using mixed anionic/cationic collectors, Int. J. Min. Sci. Technol., 32(2022), No. 1, p. 171. doi: 10.1016/j.ijmst.2021.09.009
    [42]
    X.F. Gong, J. Yao, B. Yang, et al., Activation–inhibition mechanism of diammonium hydrogen phosphate in flotation separation of brucite and calcite, J. Environ. Chem. Eng., 11(2023), No. 3, art. No. 110184. doi: 10.1016/j.jece.2023.110184
    [43]
    Z.X. Wu, D.P. Tao, Y.J. Tao, M. Jiang, and P. Zhang, A novel cationic collector for silicon removal from collophane using reverse flotation under acidic conditions, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1038. doi: 10.1007/s12613-022-2580-7
    [44]
    F.Y. Ma, P. Zhang, and D.P. Tao, Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 727. doi: 10.1007/s12613-022-2450-3
    [45]
    N. Gence, Wetting behavior of magnesite and dolomite surfaces, Appl. Surf. Sci., 252(2006), No. 10, p. 3744. doi: 10.1016/j.apsusc.2005.05.053
    [46]
    B. Yang, W.Z. Yin, Z.L. Zhu, et al., Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite, Sep. Purif. Technol., 256(2021), art. No. 117803. doi: 10.1016/j.seppur.2020.117803
    [47]
    Y.H. Wang, N. Sun, H.R. Chu, X.Y. Zheng, D.F. Lu, and H.T. Zheng, Surface dissolution behavior and its influences on the flotation separation of spodumene from silicates, Sep. Sci. Technol., 56(2021), No. 8, p. 1407. doi: 10.1080/01496395.2020.1768120
    [48]
    B. Yang, Z.L. Zhu, H.R. Sun, et al., Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant, Miner. Eng., 156(2020), art. No. 106492. doi: 10.1016/j.mineng.2020.106492
    [49]
    W.Z. Yin, B. Yang, Y.F. Fu, et al., Effect of calcium hypochlorite on flotation separation of covellite and pyrite, Powder Technol., 343(2019), p. 578. doi: 10.1016/j.powtec.2018.11.048
    [50]
    R.Q. Xie, X. Tong, X. Xie, Y.M. Zhu, and J. Liu, Flaxseed gum as new depressant in the separation of apatite and dolomite and its mechanism, Appl. Surf. Sci., 593(2022), art. No. 153390. doi: 10.1016/j.apsusc.2022.153390
    [51]
    J. Yao, X.F. Gong, H.R. Sun, R.F. He, and W.Z. Yin, Separation of magnesite and calcite based on flotation solution chemistry, Physicochem. Probl. Miner. Process., 58(2022), No. 4, art. No. 149398.
    [52]
    J.J. Wang, W.H. Li, Z.H. Zhou, Z.Y. Gao, Y.H. Hu, and W. Sun, 1-Hydroxyethylidene-1,1-diphosphonic acid used as pH-dependent switch to depress and activate fluorite flotation I: Depressing behavior and mechanism, Chem. Eng. Sci., 214(2020), art. No. 115369. doi: 10.1016/j.ces.2019.115369
    [53]
    Y. Tang, H.R. Sun, W.Z. Yin, et al., Computational modeling of cetyl phosphate adsorption on magnesite (104) surface, Miner. Eng., 171(2021), art. No. 107123. doi: 10.1016/j.mineng.2021.107123
    [54]
    Y. Tang, W.Z. Yin, and S. Kelebek, Molecular dynamics simulation of magnesite and dolomite in relation to flotation with cetyl phosphate, Colloids Surf. A: Physicochem. Eng. Aspects, 610(2021), art. No. 125928. doi: 10.1016/j.colsurfa.2020.125928
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Share Article

    Article Metrics

    Article Views(251) PDF Downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return