Cite this article as: |
Yongchul Yoo, Xiang Zhang, Fei Wang, Xin Chen, Xing-Zhong Li, Michael Nastasi, and Bai Cui, Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 146-154. https://doi.org/10.1007/s12613-023-2711-9 |
Bai Cui E-mail: bcui3@unl.edu
[1] |
R.G. Abernethy, Predicting the performance of tungsten in a fusion environment: A literature review, Mater. Sci. Technol., 33(2017), No. 4, p. 388. doi: 10.1080/02670836.2016.1185260
|
[2] |
K. Huang, L.M. Luo, X. Zan, et al., Microstructure and damage behavior of W–Cr alloy under He irradiation, J. Nucl. Mater., 501(2018), p. 181. doi: 10.1016/j.jnucmat.2018.01.019
|
[3] |
T. Fu, K.K. Cui, Y.Y. Zhang, et al., Oxidation protection of tungsten alloys for nuclear fusion applications: A comprehensive review, J. Alloys Compd., 884(2021), art. No. 161057. doi: 10.1016/j.jallcom.2021.161057
|
[4] |
H. Bolt, V. Barabash, W. Krauss, et al., Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater., 329-333(2004), p. 66. doi: 10.1016/j.jnucmat.2004.04.005
|
[5] |
D. Stork, P. Agostini, J.L. Boutard, et al., Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment, J. Nucl. Mater., 455(2014), No. 1-3, p. 277. doi: 10.1016/j.jnucmat.2014.06.014
|
[6] |
J.H. You, Copper matrix composites as heat sink materials for water-cooled divertor target, Nucl. Mater. Energy, 5(2015), p. 7. doi: 10.1016/j.nme.2015.10.001
|
[7] |
R. Neu, C. Hopf, A. Kallenbach, et al., Operational conditions in a W-clad tokamak, J. Nucl. Mater., 367-370(2007), p. 1497. doi: 10.1016/j.jnucmat.2007.04.018
|
[8] |
C.P.C. Wong, C. Baxi, R. Bourque, et al., Helium cooling of fusion reactors, Fusion Eng. Des., 25(1994), No. 1-3, p. 249. doi: 10.1016/0920-3796(94)90069-8
|
[9] |
J. Linke, J. Du, T. Loewenhoff, et al., Challenges for plasma-facing components in nuclear fusion, Matter Radiat. Extrem., 4(2019), No. 5, art. No. 056201. doi: 10.1063/1.5090100
|
[10] |
B. Riccardi, P. Gavila, J. Andrade, et al., Progress of the EU activities for the ITER Divertor Inner Vertical Target procurement, Fusion Eng. Des., 146(2019), p. 1524. doi: 10.1016/j.fusengdes.2019.02.120
|
[11] |
J. Schlosser, F. Escourbiac, M. Merola, et al., Technologies for ITER divertor vertical target plasma facing components, Nucl. Fusion, 45(2005), No. 6, p. 512. doi: 10.1088/0029-5515/45/6/013
|
[12] |
K. Krieger, H. Maier, and R. Neu, Conclusions about the use of tungsten in the divertor of ASDEX upgrade, J. Nucl. Mater., 266-269(1999), p. 207. doi: 10.1016/S0022-3115(98)00890-3
|
[13] |
N.M. Almousa and M. Bourham, Simulation of erosion and redeposition of plasma facing materials under transient plasma instabilities, IEEE Trans. Plasma Sci., 48(2020), No. 6, p. 1512. doi: 10.1109/TPS.2020.2963844
|
[14] |
M.I. Patino, D. Nishijima, M. Tokitani, D. Nagata, J.H. Yu, and R.P. Doerner, Material migration in W and Mo during bubble growth and fuzz formation, Nucl. Fusion, 61(2021), No. 7, art. No. 076001. doi: 10.1088/1741-4326/abf952
|
[15] |
F. Sefta, K.D. Hammond, N. Juslin, and B.D. Wirth, Tungsten surface evolution by helium bubble nucleation, growth and rupture, Nucl. Fusion, 53(2013), No. 7, art. No. 073015. doi: 10.1088/0029-5515/53/7/073015
|
[16] |
P. Gumbsch, J. Riedle, A. Hartmaier, and H.F. Fischmeister, Controlling factors for the brittle-to-ductile transition in tungsten single crystals, Science, 282(1998), No. 5392, p. 1293. doi: 10.1126/science.282.5392.1293
|
[17] |
P. Gumbsch, Brittle fracture and the brittle-to-ductile transition of tungsten, J. Nucl. Mater., 323(2003), No. 2-3, p. 304. doi: 10.1016/j.jnucmat.2003.08.009
|
[18] |
E.Y. Ivanov, C. Suryanarayana, and B.D. Bryskin, Synthesis of a nanocrystalline W–25 wt.% Re alloy by mechanical alloying, Mater. Sci. Eng. A, 251(1998), No. 1-2, p. 255. doi: 10.1016/S0921-5093(98)00620-0
|
[19] |
T. Hwang, A. Hasegawa, K. Tomura, et al., Effect of neutron irradiation on rhenium cluster formation in tungsten and tungsten-rhenium alloys, J. Nucl. Mater., 507(2018), p. 78. doi: 10.1016/j.jnucmat.2018.04.031
|
[20] |
R. Mateus, M. Dias, J. Lopes, et al., Blistering of W-Ta composites at different irradiation energies, J. Nucl. Mater., 438(2013), p. S1032. doi: 10.1016/j.jnucmat.2013.01.225
|
[21] |
K. Arshad, M.Y. Zhao, Y. Yuan, et al., Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys, J. Nucl. Mater., 455(2014), No. 1-3, p. 96. doi: 10.1016/j.jnucmat.2014.04.019
|
[22] |
P.B. Kemp and R.M. German, Grain growth in liquid-phase-sintered W–Mo–Ni–Fe alloys, J. Less Common Met., 175(1991), No. 2, p. 353. doi: 10.1016/0022-5088(91)90022-V
|
[23] |
C.L. Chen and Y. Zeng, Synthesis and characteristics of W–Ti alloy dispersed with Y2Ti2O7 oxides, Int. J. Refract. Met. Hard Mater., 56(2016), p. 104. doi: 10.1016/j.ijrmhm.2015.12.008
|
[24] |
O. El-Atwani, N. Li, M. Li, et al., Outstanding radiation resistance of tungsten-based high-entropy alloys, Sci. Adv., 5(2019), No. 3, art. No. eaav2002. doi: 10.1126/sciadv.aav2002
|
[25] |
O.A. Waseem and H.J. Ryu, Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications, Sci. Rep., 7(2017), No. 1, art. No. 1926. doi: 10.1038/s41598-017-02168-3
|
[26] |
O.A. Waseem, J. Lee, H.M. Lee, and H.J. Ryu, The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials, Mater. Chem. Phys., 210(2018), p. 87. doi: 10.1016/j.matchemphys.2017.06.054
|
[27] |
D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
|
[28] |
J.M. Torralba, P. Alvaredo, and A. García-Junceda, High-entropy alloys fabricated via powder metallurgy. A critical review, Powder Metall., 62(2019), No. 2, p. 84. doi: 10.1080/00325899.2019.1584454
|
[29] |
Y. Zhang, T.T. Zuo, Z. Tang, et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
|
[30] |
O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie, Development and exploration of refractory high entropy alloys—A review, J. Mater. Res., 33(2018), No. 19, p. 3092. doi: 10.1557/jmr.2018.153
|
[31] |
W. Xiong, A.X.Y. Guo, S. Zhan, C.T. Liu, and S.C. Cao, Refractory high-entropy alloys: A focused review of preparation methods and properties, J. Mater. Sci. Technol., 142(2023), p. 196. doi: 10.1016/j.jmst.2022.08.046
|
[32] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758. doi: 10.1016/j.intermet.2010.05.014
|
[33] |
O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
|
[34] |
S. Alvi and F. Akhtar, High temperature tribology of CuMoTaWV high entropy alloy, Wear, 426.
|
[35] |
B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process, Mater. Sci. Eng. A, 712(2018), p. 616. doi: 10.1016/j.msea.2017.12.021
|
[36] |
A.X. Lin-Vines, J.A. Wilson, A. Fraile, et al., Defect behaviour in the MoNbTaVW high entropy alloy (HEA), Results Mater., 15(2022), art. No. 100320. doi: 10.1016/j.rinma.2022.100320
|
[37] |
X.L. Yan, X. Zhang, F. Wang, et al., Fabrication of ODS austenitic steels and CoCrFeNi high-entropy alloys by spark plasma sintering for nuclear energy applications, JOM, 71(2019), No. 8, p. 2856. doi: 10.1007/s11837-019-03531-7
|
[38] |
C.S. Bonifacio, T.B. Holland, and K. van Benthem, Evidence of surface cleaning during electric field assisted sintering, Scripta Mater., 69(2013), No. 11-12, p. 769. doi: 10.1016/j.scriptamat.2013.08.018
|
[39] |
R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R, 63(2009), No. 4-6, p. 127. doi: 10.1016/j.mser.2008.09.003
|
[40] |
X. Zhang, F. Wang, X.L. Yan, X.Z. Li, K. Hattar, and B. Cui, Nanostructured oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloys with high thermal stability, Adv. Eng. Mater., 23(2021), No. 9, art. No. 2100291. doi: 10.1002/adem.202100291
|
[41] |
Y.F. Ye, Y.H. Zhang, Q.F. He, et al., Atomic-scale distorted lattice in chemically disordered equimolar complex alloys, Acta Mater., 150(2018), p. 182. doi: 10.1016/j.actamat.2018.03.008
|
[42] |
Q.F. He and Y. Yang, On lattice distortion in high entropy alloys, Front. Mater., 5(2018), art. No. 42. doi: 10.3389/fmats.2018.00042
|
[43] |
L. Backman and E.J. Opila, Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials, J. Eur. Ceram. Soc., 39(2019), No. 5, p. 1796. doi: 10.1016/j.jeurceramsoc.2018.11.004
|
[44] |
A. Mittal, G.J. Albertsson, G.S. Gupta, S. Seetharaman, and S. Subramanian, Some thermodynamic aspects of the oxides of chromium, Metall. Mater. Trans. B, 45(2014), No. 2, p. 338. doi: 10.1007/s11663-014-0027-x
|
[45] |
Z. Cao, S. Li, W. Xie, G. Du, and Z. Qiao, Critical evaluation and thermodynamic optimization of the V-O system, Calphad, 51(2015), p. 241. doi: 10.1016/j.calphad.2015.10.003
|
[46] |
C.B. Hamilton and H.A. Wilhelm, The preparation of tantalum metal by the carbon reduction of tantalum pentoxide, [in] Proceedings of the Iowa Academy of Science, Iowa, 1961, p. 189.
|
[47] |
N. Senthilnathan, A.R. Annamalai, and G. Venkatachalam, Synthesis of tungsten through spark plasma and conventional sintering processes, Mater. Today Proc., 5(2018), No. 2, p. 7954. doi: 10.1016/j.matpr.2017.11.478
|
[48] |
O. El-Atwani, D.V. Quach, M. Efe, et al., Multimodal grain size distribution and high hardness in fine grained tungsten fabricated by spark plasma sintering, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5670. doi: 10.1016/j.msea.2011.04.015
|
[49] |
X.H. An, Structural hierarchy defeats alloy cracking, Science, 373(2021), No. 6557, p. 857. doi: 10.1126/science.abk1671
|
[50] |
P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
|
[51] |
D.Q. Chen, G.Y. Zhou, Z.P. Liu, and S.T. Tu, Nanoindentation experimental study on mechanical properties of As-cast BNi-2 solder alloy, Procedia Eng., 130(2015), p. 652. doi: 10.1016/j.proeng.2015.12.289
|
[52] |
R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, and K.V. Rajulapati, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods, Acta Mater., 125(2017), p. 58. doi: 10.1016/j.actamat.2016.11.046
|
[53] |
L.M. Qian, M. Li, Z.R. Zhou, H. Yang, and X.Y. Shi, Comparison of nano-indentation hardness to microhardness, Surf. Coat. Technol., 195(2005), No. 2-3, p. 264. doi: 10.1016/j.surfcoat.2004.07.108
|
[54] |
S. Alvi, D.M. Jarzabek, M.G. Kohan, et al., Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 21070. doi: 10.1021/acsami.0c02156
|
[55] |
A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis, Microstructure and wear behavior of a refractory high entropy alloy, Int. J. Refract. Met. Hard Mater., 57(2016), p. 50. doi: 10.1016/j.ijrmhm.2016.02.006
|
[56] |
H. Jiang, H.Z. Zhang, T.D. Huang, Y.P. Lu, T.M. Wang, and T.J. Li, Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys, Mater. Des., 109(2016), p. 539. doi: 10.1016/j.matdes.2016.07.113
|
[57] |
Q.Y. Li, H. Zhang, D.C. Li, et al., WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition, Materials, 12(2019), No. 3, art. No. 533. doi: 10.3390/ma12030533
|
[58] |
Z. Wang, Y. Yuan, K. Arshad, et al., Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys, Fusion Eng. Des., 125(2017), p. 496. doi: 10.1016/j.fusengdes.2017.04.082
|
[59] |
T. Gräning, M. Klimenkov, M. Rieth, C. Heintze, and A. Möslang, Long-term stability of the microstructure of austenitic ODS steel rods produced with a carbon-containing process control agent, J. Nucl. Mater., 523(2019), p. 111. doi: 10.1016/j.jnucmat.2019.05.060
|
[60] |
J. Svoboda, P. Bořil, J. Holzer, et al., Substantial improvement of high temperature strength of new-generation nano-oxide-strengthened alloys by addition of metallic yttrium, Materials, 15(2022), No. 2, art. No. 504. doi: 10.3390/ma15020504
|
[61] |
S. Ukai, S. Ohtsuka, T. Kaito, et al., High-temperature strength characterization of advanced 9Cr–ODS ferritic steels, Mater. Sci. Eng. A, 510-511(2009), p. 115. doi: 10.1016/j.msea.2008.04.126
|
[62] |
L. Fave, M.A. Pouchon, M. Döbeli, M. Schulte-Borchers, and A. Kimura, Helium ion irradiation induced swelling and hardening in commercial and experimental ODS steels, J. Nucl. Mater., 445(2014), No. 1-3, p. 235. doi: 10.1016/j.jnucmat.2013.11.004
|
[63] |
C.Y. Lu, Z. Lu, X. Wang, et al., Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation, Sci. Rep., 7(2017), art. No. 40343. doi: 10.1038/srep40343
|