Cite this article as: |
Yiping Yu, Yuchen Cui, Jiangang He, Wei Mao, and Jikun Chen, Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 48-59. https://doi.org/10.1007/s12613-023-2712-8 |
Jikun Chen E-mail: jikunchen@ustb.edu.cn
[1] |
P. Schofield, A. Bradicich, R.M. Gurrola, et al., Harnessing the metal–insulator transition of VO2 in neuromorphic computing, Adv. Mater., 35(2023), No. 37, art. No. 2205294. doi: 10.1002/adma.202205294
|
[2] |
J. Faucheu, E. Bourgeat-Lami, and V. Prevot, A review of vanadium dioxide as an actor of nanothermochromism: Challenges and perspectives for polymer nanocomposites, Adv. Eng. Mater., 21(2019), No. 2, art. No. 1800438. doi: 10.1002/adem.201800438
|
[3] |
Z. Hiroi, Structural instability of the rutile compounds and its relevance to the metal–insulator transition of VO2, Prog. Solid State Chem., 43(2015), No. 1-2, p. 47. doi: 10.1016/j.progsolidstchem.2015.02.001
|
[4] |
X.C. Zhou, H.F. Li, F.Q. Meng, et al., Revealing the role of hydrogen in electron-doping mottronics for strongly correlated vanadium dioxide, J. Phys. Chem. Lett., 13(2022), No. 34, p. 8078. doi: 10.1021/acs.jpclett.2c02001
|
[5] |
X.C. Zhou, Y.C. Cui, Y.L. Shang, et al., Non-equilibrium spark plasma reactive doping enables highly adjustable metal-to-insulator transitions and improved mechanical stability for VO2, J. Phys. Chem. C, 127(2023), No. 5, p. 2639. doi: 10.1021/acs.jpcc.2c07631
|
[6] |
S. Catalano, M. Gibert, J. Fowlie, J. Íñiguez, J.M. Triscone, and J. Kreisel, Rare-earth nickelates RNiO3: Thin films and heterostructures, Rep. Prog. Phys., 81(2018), No. 4, art. No. 046501. doi: 10.1088/1361-6633/aaa37a
|
[7] |
J.R. Li, S. Ramanathan, and R. Comin, Carrier doping physics of rare earth perovskite nickelates RENiO3, Front. Phys., 10(2022), art. No. 834882. doi: 10.3389/fphy.2022.834882
|
[8] |
J. Gainza, F. Serrano-Sánchez, J.E.F.S. Rodrigues, N.M. Nemes, J.L. Martínez, and J.A. Alonso, Metastable materials accessed under moderate pressure conditions (P≤3.5 GPa) in a piston-cylinder press, Materials, 14(2021), No. 8, art. No. 1946. doi: 10.3390/ma14081946
|
[9] |
X.Y. Li, Z.A. Li, F.B. Yan, et al., Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates, Rare Met., 41(2022), No. 10, p. 3495. doi: 10.1007/s12598-022-02033-x
|
[10] |
J.K. Chen, Z.A. Li, H.L. Dong, et al., Pressure induced unstable electronic states upon correlated nickelates metastable perovskites as batch synthesized via heterogeneous nucleation, Adv. Funct. Mater., 30(2020), No. 23, art. No. 2000987. doi: 10.1002/adfm.202000987
|
[11] |
A.M. Haghiri-Gosnet and J.P. Renard, CMR manganites: Physics, thin films and devices, J. Phys. D: Appl. Phys., 36(2003), No. 8, p. R127. doi: 10.1088/0022-3727/36/8/201
|
[12] |
K. Dörr, Ferromagnetic manganites: Spin-polarized conduction versus competing interactions, J. Phys. D: Appl. Phys., 39(2006), No. 7, p. R125. doi: 10.1088/0022-3727/39/7/R01
|
[13] |
W. Zhong, C.T. Au, and Y.W. Du, Review of magnetocaloric effect in perovskite-type oxides, Chin. Phys. B, 22(2013), No. 5, art. No. 057501. doi: 10.1088/1674-1056/22/5/057501
|
[14] |
M. Itoh, J. Hashimoto, S. Yamaguchi, and Y. Tokura, Spin state and metal–insulator transition in LaCoO3 and RCoO3 (R=Nd, Sm and Eu), Physica B, 281-282(2000), p. 510. doi: 10.1016/S0921-4526(99)01044-3
|
[15] |
Y. Kobayashi, Y. Sakurai, N. Tsuji, K. Sato, and K. Asai, Symmetry change of Co 3d orbital associated with the 500-K spin crossover accompanied by insulator-to-metal transition in LaCoO3, Phys. Rev. B, 98(2018), No. 11, art. No. 115154. doi: 10.1103/PhysRevB.98.115154
|
[16] |
A. Podlesnyak, A. Mirmelstein, N. Golosova, et al., Magnetic properties and crystal-field excitations in RxSr1−xCoO3, Appl. Phys. A, 74(2002), No. 1, p. s1746.
|
[17] |
V. Singh and J.J. Pulikkotil, Electronic phase transition and transport properties of Ti2O3, J. Alloys Compd., 658(2016), p. 430. doi: 10.1016/j.jallcom.2015.10.203
|
[18] |
A.I. Poteryaev, A.I. Lichtenstein, and G. Kotliar, Nonlocal Coulomb interactions and metal–insulator transition in Ti2O3: A cluster LDA + DMFT approach, Phys. Rev. Lett., 93(2004), No. 8, art. No. 086401. doi: 10.1103/PhysRevLett.93.086401
|
[19] |
V. Eyert, U. Schwingenschlögl, and U. Eckern, Charge order, orbital order, and electron localization in the Magnéli phase Ti4O7, Chem. Phys. Lett., 390(2004), No. 1-3, p. 151. doi: 10.1016/j.cplett.2004.04.015
|
[20] |
E.J.W. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures, Nature, 144(1939), No. 3642, p. 327.
|
[21] |
S. Konishi, K. Oka, H. Eisaki, K. Tanaka, and T.H. Arima, Growth of single-crystalline RFe2O4−δ (R = Y, Tm, Yb) by the floating zone melting method in a mixture of N2, H2, and CO2 gases and magnetic properties of the compounds, Cryst. Growth Des., 19(2019), No. 10, p. 5498. doi: 10.1021/acs.cgd.8b01393
|
[22] |
Y.W. Long, T. Kawakami, W.T. Chen, et al., Pressure effect on intersite charge transfer in A-site-ordered double-perovskite-structure oxide, Chem. Mater., 24(2012), No. 11, p. 2235. doi: 10.1021/cm301267e
|
[23] |
E.K. Hemery, G.V.M. Williams, and H.J. Trodahl, Anomalous thermoelectric power in SrFeO3−δ from charge ordering and phase separation, Phys. Rev. B, 75(2007), No. 9, art. No. 092403. doi: 10.1103/PhysRevB.75.092403
|
[24] |
P. Karen, Chemistry and thermodynamics of the twin charge-ordering transitions in RBaFe2O5+w series, J. Solid State Chem., 177(2004), No. 1, p. 281. doi: 10.1016/j.jssc.2003.08.011
|
[25] |
Y.J. Xie, M.D. Scafetta, E.J. Moon, A.L. Krick, R.J. Sichel-Tissot, and S.J. May, Electronic phase diagram of epitaxial La1−xSrxFeO3 films, Appl. Phys. Lett., 105(2014), No. 6, art. No. 062110. doi: 10.1063/1.4893139
|
[26] |
K. Nagasawa, Crystal growth of VnO2n−1 (3 ≤ n ≤ 8) by the chemical transport reaction and electrical properties, Mater. Res. Bull., 6(1971), No. 9, p. 853. doi: 10.1016/0025-5408(71)90122-X
|
[27] |
K. Nagasawa, Y. Bando, and T. Takada, Crystal growth of vanadium oxides by chemical transport, J. Cryst. Growth, 17(1972), p. 143. doi: 10.1016/0022-0248(72)90240-0
|
[28] |
S. Kachi, K. Kosuge, and H. Okinaka, Metal–insulator transition in VnO2n−1, J. Solid State Chem., 6(1973), No. 2, p. 258. doi: 10.1016/0022-4596(73)90189-8
|
[29] |
B. Stegemann, M. Klemm, S. Horn, and M. Woydt, Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals, Beilstein J. Nanotechnol., 2(2011), p. 59. doi: 10.3762/bjnano.2.8
|
[30] |
J. Blasco, S. Lafuerza, J. García, and G. Subías, Structural properties in RFe2O4 compounds (R = Tm, Yb, and Lu), Phys. Rev. B, 90(2014), No. 9, art. No. 094119. doi: 10.1103/PhysRevB.90.094119
|
[31] |
D.H. Kim, J. Hwang, E. Lee, et al., Interplay between R 4f and Fe 3d states in charge-ordered RFe2O4 (R = Er, Tm, Lu), Phys. Rev. B, 87(2013), No. 18, art. No. 184409. doi: 10.1103/PhysRevB.87.184409
|
[32] |
M. Tanaka, J. Akimitsu, Y. Inada, N. Kimizuka, I. Shindo, and K. Siratori, Conductivity and specific heat anomalies at the low temperature transition in the stoichiometric YFe2O4, Solid State Commun., 44(1982), No. 5, p. 687. doi: 10.1016/0038-1098(82)90583-X
|
[33] |
D.K. Pratt, S. Chang, W. Tian, et al., Checkerboard to stripe charge ordering transition in TbBaFe2O5, Phys. Rev. B, 87(2013), No. 4, art. No. 045127. doi: 10.1103/PhysRevB.87.045127
|
[34] |
D. Urushihara, T. Matsumura, K. Nakajima, et al., Charge ordering and successive phase transitions of mixed-valence iron oxide GdBaFe2O5, J. Solid State Chem., 282(2020), art. No. 121069. doi: 10.1016/j.jssc.2019.121069
|
[35] |
Z. Kąkol, D. Owoc, J. Przewoźnik, et al., The effect of doping on global lattice properties of magnetite Fe3−xMexO4 (Me = Zn, Ti and Al), J. Solid State Chem., 192(2012), p. 120. doi: 10.1016/j.jssc.2012.04.001
|
[36] |
V.A.M. Brabers, F. Walz, and H. Kronmüller, Impurity effects upon the Verwey transition in magnetite, Phys. Rev. B, 58(1998), No. 21, p. 14163. doi: 10.1103/PhysRevB.58.14163
|
[37] |
S.K. Park, T. Ishikawa, Y. Tokura, J.Q. Li, and Y. Matsui, Variation of charge-ordering transitions in R1/3Sr2/3FeO3 (R = La, Pr, Nd, Sm, and Gd), Phys. Rev. B, 60(1999), No. 15, p. 10788. doi: 10.1103/PhysRevB.60.10788
|
[38] |
J. Blasco, M.C. Sánchez, J. García, J. Stankiewicz, and J. Herrero-Martín, Growth of Sr2/3Ln1/3FeO3 (Ln = La, Pr, and Nd) single crystals by the floating zone technique, J. Cryst. Growth, 310(2008), No. 13, p. 3247. doi: 10.1016/j.jcrysgro.2008.03.021
|
[39] |
I. Yamada, H. Etani, K. Tsuchida, et al., Control of bond-strain-induced electronic phase transitions in iron perovskites, Inorg. Chem., 52(2013), No. 23, p. 13751. doi: 10.1021/ic402344m
|
[40] |
H. Etani, I. Yamada, K. Ohgushi, et al., Suppression of intersite charge transfer in charge-disproportionated perovskite YCu3Fe4O12, J. Am. Chem. Soc., 135(2013), No. 16, p. 6100. doi: 10.1021/ja312015j
|
[41] |
H. Kawanaka, E. Kawawa, Y. Nishihara, et al., Magnetic properties of perovskite Ca1−xSrxFeO3, AIP Adv., 8(2018), No. 10, art. No. 101418. doi: 10.1063/1.5042695
|
[42] |
J. Fujioka, S. Ishiwata, Y. Kaneko, Y. Taguchi, and Y. Tokura, Variation of charge dynamics upon the helimagnetic and metal-insulator transitions for perovskite AFeO3 (A= Sr and Ca), Phys. Rev. B, 85(2012), No. 15, art. No. 155141. doi: 10.1103/PhysRevB.85.155141
|
[43] |
T. Takeda, R. Kanno, Y. Kawamoto, et al., Metal–semiconductor transition, charge disproportionation, and low-temperature structure of Ca1−xSrxFeO3 synthesized under high-oxygen pressure, Solid State Sci., 2(2000), No. 7, p. 673. doi: 10.1016/S1293-2558(00)01088-8
|
[44] |
N. Kimizuka, A. Takenaka, Y. Sasada, and T. Katsura, A series of new compounds A3+Fe2O4 (A = Ho, Er, Tm, Yb, and Lu), Solid State Commun., 15(1974), No. 8, p. 1321. doi: 10.1016/0038-1098(74)91372-6
|
[45] |
Y. Yamada, K. Kitsuda, S. Nohdo, and N. Ikeda, Charge and spin ordering process in the mixed-valence system LuFe2O4: Charge ordering, Phys. Rev. B, 62(2000), No. 18, p. 12167. doi: 10.1103/PhysRevB.62.12167
|
[46] |
J. Blasco, S. Lafuerza, J. García, et al., Characterization of competing distortions in YFe2O4, Phys. Rev. B, 93(2016), No. 18, art. No. 184110. doi: 10.1103/PhysRevB.93.184110
|
[47] |
M. Kishi, Y. Nakagawa, M. Tanaka, N. Kimizuka, and I. Shindo, Low-temperature transitions of RFe2O4, J. Magn. Magn. Mater., 31-34(1983), p. 807. doi: 10.1016/0304-8853(83)90695-9
|
[48] |
P.M. Woodward and P. Karen, Mixed valence in YBaFe2O5, Inorg. Chem., 42(2003), No. 4, p. 1121. doi: 10.1021/ic026022z
|
[49] |
J. Lindén, P. Karen, A. Kjekshus, J. Miettinen, T. Pietari, and M. Karppinen, Valence-state mixing and separation in SmBaFe2O5+w, Phys. Rev. B, 60(1999), No. 22, p. 15251. doi: 10.1103/PhysRevB.60.15251
|
[50] |
P. Karen, P.M. Woodward, P.N. Santhosh, T. Vogt, P.W. Stephens, and S. Pagola, Verwey transition under oxygen loading in RBaFe2O5+w (R = Nd and Sm), J. Solid State Chem., 167(2002), No. 2, p. 480. doi: 10.1016/S0022-4596(02)99665-9
|
[51] |
P. Karen, P.M. Woodward, J. Lindén, T. Vogt, A. Studer, and P. Fischer, Verwey transition in mixed-valence TbBaFe2O5: Two attempts to order charges, Phys. Rev. B, 64(2001), No. 21, art. No. 214405. doi: 10.1103/PhysRevB.64.214405
|
[52] |
P.M. Woodward, E. Suard, and P. Karen, Structural tuning of charge, orbital, and spin ordering in double-cell perovskite series between NdBaFe2O5 and HoBaFe2O5, J. Am. Chem. Soc., 125(2003), No. 29, p. 8889. doi: 10.1021/ja034813+
|
[53] |
D. Adler, Mechanisms for metal–nonmental transitions in transition-metal oxides and sulfides, Rev. Mod. Phys., 40(1968), No. 4, p. 714. doi: 10.1103/RevModPhys.40.714
|
[54] |
J.P. Wright, J.P. Attfield, and P.G. Radaelli, Charge ordered structure of magnetite Fe3O4 below the Verwey transition, Phys. Rev. B, 66(2002), No. 21, art. No. 214422. doi: 10.1103/PhysRevB.66.214422
|
[55] |
F. Delille, B. Dieny, J.B. Moussy, et al., Study of the electronic paraprocess and antiphase boundaries as sources of the demagnetisation phenomenon in magnetite, J. Magn. Magn. Mater., 294(2005), No. 1, p. 27. doi: 10.1016/j.jmmm.2004.12.018
|
[56] |
M. Matsui, S. Todo, and S. Chikazumi, Specific heat and electrical conductivity of low temperature phase of magnetite, J. Phys. Soc. Jpn., 42(1977), No. 5, p. 1517. doi: 10.1143/JPSJ.42.1517
|
[57] |
M. Ziese and H.J. Blythe, Magnetoresistance of magnetite, J. Phys.: Condens. Matter, 12(2000), No. 1, p. 13. doi: 10.1088/0953-8984/12/1/302
|
[58] |
D. Varshney and A. Yogi, Structural and transport properties of stoichiometric Mn2+-doped magnetite: Fe3−xMnxO4, Mater. Chem. Phys., 128(2011), No. 3, p. 489. doi: 10.1016/j.matchemphys.2011.03.040
|
[59] |
M. Onose, H. Takahashi, H. Sagayama, Y. Yamasaki, and S. Ishiwata, Complete phase diagram of Sr1−xLaxFeO3 with versatile magnetic and charge ordering, Phys. Rev. Mater., 4(2020), No. 11, art. No. 114420. doi: 10.1103/PhysRevMaterials.4.114420
|
[60] |
J. Matsuno, T. Mizokawa, A. Fujimori, Y. Takeda, S. Kawasaki, and M. Takano, Different routes to charge disproportionation in perovskite-type Fe oxides, Phys. Rev. B, 66(2002), No. 19, art. No. 193103. doi: 10.1103/PhysRevB.66.193103
|
[61] |
H. Shiraki, T. Saito, M. Azuma, and Y. Shimakawa, Metallic behavior in A-site-ordered perovskites ACu3V4O12 with A = Na+, Ca2+, and Y3+, J. Phys. Soc. Jpn., 77(2008), No. 6, art. No. 064705. doi: 10.1143/JPSJ.77.064705
|
[62] |
T. Saito, S.B. Zhang, D. Khalyavin, P. Manuel, J.P. Attfield, and Y. Shimakawa, G-type antiferromagnetic order in the metallic oxide LaCu3Cr4O12, Phys. Rev. B, 95(2017), No. 4, art. No. 041109. doi: 10.1103/PhysRevB.95.041109
|
[63] |
J. Sugiyama, H. Nozaki, I. Umegaki, et al., Static magnetic order in A-site ordered perovskite, LaCu3Cr4O12, probed with muon spin spectroscopy, Physics Procedia, 75(2015), p. 435. doi: 10.1016/j.phpro.2015.12.053
|
[64] |
S.B. Zhang, T. Saito, M. Mizumaki, and Y. Shimakawa, Temperature-induced intersite charge transfer involving Cr ions in A-site-ordered perovskites ACu3Cr4O12 (A = La and Y), Chemistry, 20(2014), No. 31, p. 9510. doi: 10.1002/chem.201403692
|
[65] |
J. Sánchez-Benítez, J.A. Alonso, M.J. Martínez-Lope, A. de Andrés, and M.T. Fernández-Díaz, Enhancement of the Curie temperature along the perovskite series RCu3Mn4O12 driven by chemical pressure of R3+ cations (R = rare earths), Inorg. Chem., 49(2010), No. 12, p. 5679. doi: 10.1021/ic100699u
|
[66] |
T. Mizokawa, Y. Morita, T. Sudayama, et al., Metallic versus insulating behavior in the A-site ordered perovskite oxides ACu3Co4O12 (A = Ca and Y) controlled by Mott and Zhang-Rice physics, Phys. Rev. B, 80(2009), No. 12, art. No. 125105. doi: 10.1103/PhysRevB.80.125105
|
[67] |
Y.W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka, and Y. Shimakawa, Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite, Nature, 458(2009), No. 7234, p. 60. doi: 10.1038/nature07816
|
[68] |
Y.W. Long, T. Saito, T. Tohyama, K. Oka, M. Azuma, and Y. Shimakawa, Intermetallic charge transfer in A-site-ordered double perovskite BiCu3Fe4O12, Inorg. Chem., 48(2009), No. 17, p. 8489. doi: 10.1021/ic901128k
|
[69] |
I. Yamada, H. Etani, M. Murakami, et al., Charge-order melting in charge-disproportionated perovskite CeCu3Fe4O12, Inorg. Chem., 53(2014), No. 21, p. 11794. doi: 10.1021/ic502138v
|
[70] |
I. Yamada, K. Shiro, H. Etani, et al., Valence transitions in negative thermal expansion material SrCu3Fe4O12, Inorg. Chem., 53(2014), No. 19, p. 10563. doi: 10.1021/ic501665c
|
[71] |
I. Yamada, K. Takata, N. Hayashi, et al., A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet, Angew. Chem. Int. Ed., 47(2008), No. 37, p. 7032. doi: 10.1002/anie.200801482
|
[72] |
H. Watanabe, Magnetic properties of perovskites containing strontium I. strontium-rich ferrites and cobaltites, J. Phys. Soc. Jpn., 12(1957), No. 5, p. 515. doi: 10.1143/JPSJ.12.515
|
[73] |
F. Kanamaru, H. Miyamoto, Y. Mimura, et al., Synthesis of a new perovskite CaFeO3, Mater. Res. Bull., 5(1970), No. 4, p. 257. doi: 10.1016/0025-5408(70)90121-2
|
[74] |
J. Matsuno, T. Mizokawa, A. Fujimori, et al., Photoemission and Hartree-Fock studies of oxygen-hole ordering in charge-disproportionated La1−xSrxFeO3, Phys. Rev. B, 60(1999), No. 7, p. 4605. doi: 10.1103/PhysRevB.60.4605
|
[75] |
J.K. Chen, H.Y. Hu, J.O. Wang, et al., Overcoming synthetic metastabilities and revealing metal-to-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates, Mater. Horiz., 6(2019), No. 4, p. 788. doi: 10.1039/C9MH00008A
|
[76] |
M. Nakano, K. Shibuya, D. Okuyama, et al., Collective bulk carrier delocalization driven by electrostatic surface charge accumulation, Nature, 487(2012), No. 7408, p. 459. doi: 10.1038/nature11296
|
[77] |
V.N. Andreev and V.A. Klimov, Specific features of electrical conductivity of V3O5 single crystals, Phys. Solid State, 53(2011), No. 12, p. 2424. doi: 10.1134/S106378341112002X
|
[78] |
J.L. Hodeau and M. Marezio, The crystal structure of V4O7 at 120° K, J. Solid State Chem., 23(1978), No. 3-4, p. 253. doi: 10.1016/0022-4596(78)90072-5
|
[79] |
M. Iihoshi, M. Goto, Y. Kosugi, and Y. Shimakawa, Cascade charge transitions of unusually high and mixed valence Fe3.5+ in the A-site layer-ordered double perovskite SmBaFe2O6, J. Am. Chem. Soc., 145(2023), No. 19, p. 10756. doi: 10.1021/jacs.3c01654
|