Kerui Song, Zhou Li, Mei Fang, Zhu Xiao, and Qian Lei, Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 384-394. https://doi.org/10.1007/s12613-023-2715-5
Cite this article as:
Kerui Song, Zhou Li, Mei Fang, Zhu Xiao, and Qian Lei, Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 384-394. https://doi.org/10.1007/s12613-023-2715-5
Research Article

Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering

+ Author Affiliations
  • Corresponding author:

    Zhu Xiao    E-mail: xiaozhumse@163.com

  • Received: 18 April 2023Revised: 6 June 2023Accepted: 26 July 2023Available online: 27 July 2023
  • Pure cobalt (Co) thin films were fabricated by direct current magnetron sputtering, and the effects of sputtering power and pressure on the microstructure and electromagnetic properties of the films were investigated. As the sputtering power increases from 15 to 60 W, the Co thin films transition from an amorphous to a polycrystalline state, accompanied by an increase in the intercrystal pore width. Simultaneously, the resistivity decreases from 276 to 99 μΩ·cm, coercivity increases from 162 to 293 Oe, and in-plane magnetic anisotropy disappears. As the sputtering pressure decreases from 1.6 to 0.2 Pa, grain size significantly increases, resistivity significantly decreases, and the coercivity significantly increases (from 67 to 280 Oe), which can be attributed to the increase in defect width. Correspondingly, a quantitative model for the coercivity of Co thin films was formulated. The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy, which is primarily attributable to increased microstress.
  • loading
  • [1]
    A.E. Kaloyeros, Y.L. Pan, J. Goff, and B. Arkles, Editors’ choice—Review—Cobalt thin films: Trends in processing technologies and emerging applications, ECS J. Solid State Sci. Technol., 8(2019), No. 2, p. 119. doi: 10.1149/2.0051902jss
    [2]
    J. Mohapatra, M.Y. Xing, J. Elkins, and J.P. Liu, Hard and semi-hard magnetic materials based on cobalt and cobalt alloys, J. Alloys Compd., 824(2020), art. No. 153874. doi: 10.1016/j.jallcom.2020.153874
    [3]
    E. Abualgassem, M. Maarouf, A. Bake, D. Cortie, K. Alam, and M.B. Haider, Optical and magnetic properties of cobalt doped TiN thin films grown by RF/DC magnetron sputtering, J. Magn. Magn. Mater., 550(2022), art. No. 169023. doi: 10.1016/j.jmmm.2022.169023
    [4]
    G.D. Soria, K. Freindl, J.E. Prieto, et al., Growth and characterization of ultrathin cobalt ferrite films on Pt(111), Appl. Surf. Sci., 586(2022), art. No. 152672. doi: 10.1016/j.apsusc.2022.152672
    [5]
    V. Shukla, C. Mukherjee, R. Chari, S. Rai, K.S. Bindra, and A. Banerjee, Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique, J. Magn. Magn. Mater., 370(2014), p. 100. doi: 10.1016/j.jmmm.2014.06.061
    [6]
    Y. Shiratsuchi, T. Murakami, Y. Endo, and M. Yamamoto, Evolution of magnetic state of ultrathin co films with volmer–weber growth, Jpn. J. Appl. Phys., 44(2005), No. 12R, art. No. 8456. doi: 10.1143/JJAP.44.8456
    [7]
    C.Y. Hsu, C.H.T. Chang, W.H. Chen, J.L. Tsai, and J.S. Tsay, Comparative studies of magnetic properties of Co films on annealed and unannealed rubrene/Si(100), J. Alloys Compd., 576(2013), p. 393. doi: 10.1016/j.jallcom.2013.06.002
    [8]
    S.D. Elliott, G. Dey, and Y. Maimaiti, Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations, J. Chem. Phys., 146(2017), No. 5, art. No. 052822. doi: 10.1063/1.4975085
    [9]
    T. Kuschel, T. Becker, D. Bruns, et al., Uniaxial magnetic anisotropy for thin Co films on glass studied by magnetooptic Kerr effect, J. Appl. Phys., 109(2011), No. 9, art. No. 093907. doi: 10.1063/1.3576135
    [10]
    D. Kumar and A. Gupta, Evolution of structural and magnetic properties of sputtered nanocrystalline Co thin films with thermal annealing, J. Magn. Magn. Mater., 308(2007), No. 2, p. 318. doi: 10.1016/j.jmmm.2006.06.008
    [11]
    R. Gupta, A. Khandelwal, D.K. Avasthi, K.G.M. Nair, and A. Gupta, Phase transitions in Co thin film induced by low energy and high energy ion beam irradiation, J. Appl. Phys., 107(2010), No. 3, art. No. 033902. doi: 10.1063/1.3294609
    [12]
    A. Jaiswal, S. Rai, M.K. Tiwari, V.R. Reddy, G.S. Lodha, and R.V. Nandedkar, Effect of Si layer thickness on the structural properties of a Co/Si multilayer system, J. Phys.: Condens. Matter, 19(2007), No. 1, art. No. 016001. doi: 10.1088/0953-8984/19/1/016001
    [13]
    N. Pandey, M. Gupta, R. Gupta, S. Chakravarty, N. Shukla, and A. Devishvili, Structural and magnetic properties of Co-N thin films deposited using magnetron sputtering at 523 K, J. Alloys Compd., 694(2017), p. 1209. doi: 10.1016/j.jallcom.2016.10.095
    [14]
    Q.Y. Qian, F. Wang, X.K. Zhang, and Q.P. Zhao, Direct electro-phosphorization of nickel and cobalt films in hypophosphite solution for efficient hydrogen evolution, Inorg. Chem. Commun., 127(2021), art. No. 108555. doi: 10.1016/j.inoche.2021.108555
    [15]
    R. Hippler, M. Cada, P. Ksirova, et al., Deposition of cobalt oxide films by reactive pulsed magnetron sputtering, Surf. Coat. Technol., 405(2021), art. No. 126590. doi: 10.1016/j.surfcoat.2020.126590
    [16]
    L.B. Gao, S.W. Jiang, and R.G. Li, Effect of sputtering pressure on structure and dielectric properties of bismuth magnesium niobate thin films prepared by RF magnetron sputtering, Thin Solid Films, 603(2016), p. 391. doi: 10.1016/j.tsf.2016.02.059
    [17]
    J. Xu, M. Gao, L.L. Lu, Y.L. Wang, and X. Liu, Study on the resistivity and infrared emissivity of TiNx films at different sputtering power, Infrared Phys. Technol., 119(2021), art. No. 103946. doi: 10.1016/j.infrared.2021.103946
    [18]
    A. Sharma, S. Mohan, and S. Suwas, The effect of the deposition rate on the crystallographic texture, microstructure evolution and magnetic properties in sputter deposited Ni–Mn–Ga thin films, Thin Solid Films, 616(2016), p. 530. doi: 10.1016/j.tsf.2016.08.033
    [19]
    S. Bose, S. Mandal, A.K. Barua, and S. Mukhopadhyay, Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells, J. Mater. Sci. Technol., 55(2020), p. 136. doi: 10.1016/j.jmst.2019.12.004
    [20]
    C.D. Dai, Y. Fu, J.X. Guo, and C.W. Du, Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1388. doi: 10.1007/s12613-020-2149-2
    [21]
    F.Y. Liang, J.R. Yang, H.Q. Wang, and J.W. Wu, Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1190. doi: 10.1007/s12613-023-2620-y
    [22]
    X.Z. Zhang, Y.P. Xia, X. Liu, Y.M. Zhong, H.B. Zhao, and P.H. Wang, Effect of annealing temperature on the microstructure and optoelectrical properties of ZnO thin films and their application in self-powered accelerometers, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1186. doi: 10.1007/s12613-019-1828-3
    [23]
    M.A. Basha, C.L. Prajapat, S. Singh, and S. Basu, Optimization and characterization of cobalt & gadolinium films using X-ray scattering, [in] AIP Conference Proceedings, Bhubaneswar, 2017.
    [24]
    Y. Wang, Study on Microstructure and Properties of Co and CoTaZr Thin films by Magnetron Sputtering [Dissertation], Guangdong University of Technology, Guangzhou, 2012.
    [25]
    K. Bukharia, P. Karmakar, D. Kumar, V.R. Reddy, and A. Gupta, Evolution of magnetic anisotropy in cobalt film on nanopatterned silicon substrate studied in situ using MOKE, J. Magn. Magn. Mater., 497(2020), art. No. 165934. doi: 10.1016/j.jmmm.2019.165934
    [26]
    M.O. Liedke, M. Körner, K. Lenz, et al., Crossover in the surface anisotropy contributions of ferromagnetic films on rippled Si surfaces, Phys. Rev. B, 87(2013), No. 2, art. No. 024424. doi: 10.1103/PhysRevB.87.024424
    [27]
    J. W. Huang and Z. Li, X-ray Diffraction of Polycrystalline Materials: Experimental Principles, Methods and Applications, Metallurgical Industry Press, Beijing, 2012, p. 119.
    [28]
    D.W. Hoffman and J.A. Thornton, The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures, Thin Solid Films, 45(1977), No. 2, p. 387. doi: 10.1016/0040-6090(77)90276-0
    [29]
    J.H. Cha, K. Ashok, N.J. Suthan Kissinger, et al., Effect of thermal annealing on the structure, morphology, and electrical properties of Mo bottom electrodes for solar cell applications, J. Korean Phy. Soc., 59(2011), No. 3, p. 2280. doi: 10.3938/jkps.59.2280
    [30]
    H. Ahn, D.C. Lee, and Y. Um, Substrate temperature effects on DC sputtered Mo thin film, Appl. Sci. Converg. Technol., 26(2017), No. 1, p. 11. doi: 10.5757/ASCT.2017.26.1.11
    [31]
    M. Kumar, A. Kumar, and A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films, ACS Appl. Mater. Interfaces, 7(2015), No. 6, p. 3571. doi: 10.1021/am507397z
    [32]
    Y. Kajikawa, S. Noda, and H. Komiyama, Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides, J. Vac. Sci. Technol. A: Vac. Surf. Films, 21(2003), No. 6, p. 1943. doi: 10.1116/1.1619414
    [33]
    D.D. Wang, Theoretical Analysis About the Surface Structure and Energy Anisotropy of Crystal [Dissertation], Shanxi Normal University, Shanxi, 2007.
    [34]
    S. Mahieu and D. Depla, Reactive sputter deposition of TiN layers: Modelling the growth by characterization of particle fluxes towards the substrate, J. Phys. D: Appl. Phys., 42(2009), No. 5, art. No. 053002. doi: 10.1088/0022-3727/42/5/053002
    [35]
    G. Regmi and S. Velumani, Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISe solar cells, Opt. Mater., 119(2021), art. No. 111350. doi: 10.1016/j.optmat.2021.111350
    [36]
    M.B. Tian and Z.C. Li, Material Technology and Thin Film Materials, 5th, Tsinghua University Press, Beijing, 2018.
    [37]
    N. Daichakomphu, S. Abbas, T.L. Chou, et al., Understanding the effect of sputtering pressures on the thermoelectric properties of GeTe films, J. Alloys Compd., 893(2022), art. No. 162342. doi: 10.1016/j.jallcom.2021.162342
    [38]
    D.T.S. Perkins and R.A. Smith, Drude conductivity of a granular metal, Ann. Phys., 418(2020), art. No. 168170. doi: 10.1016/j.aop.2020.168170
    [39]
    J.H. Yoon, S. Cho, W.M. Kim, et al., Optical analysis of the microstructure of a Mo back contact for Cu(In, Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity, Sol. Energy Mater. Sol. Cells, 95(2011), No. 11, p. 2959. doi: 10.1016/j.solmat.2011.02.030
    [40]
    A.K. Battu, N. Makeswaran, and C.V. Ramana, Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2734. doi: 10.1016/j.jmst.2019.05.023
    [41]
    X.M. Liu and G. Zangari, Easy axis dispersion and micromagnetic structure of electrodeposited, high moment Fe–Co–Ni films, J. Appl. Phys., 90(2001), No. 10, p. 5247. doi: 10.1063/1.1412278
    [42]
    G. Durin and S. Zapperi, The barkhausen effect, [in] G. Bertotti and I.D. Mayergoyz, eds., The Science of Hysteresis, Elsevier, Amsterdam, (2006), p. 181.
    [43]
    J. D. Livingston and M. D. McConnell, Domain-wall energy in cobalt-rare-earth compounds, J. Appl. Phys., 43(1972), No. 11, p. 4756. doi: 10.1063/1.1661003
    [44]
    R. Friedberg and D.I. Paul, New theory of coercive force of ferromagnetic materials, Phys. Rev. Lett., 34(1975), No. 19, p. 1234. doi: 10.1103/PhysRevLett.34.1234
    [45]
    B. Ma, X.Q. Bao, A.Z. Sun, J.H. Li, and X.X. Gao, Microstructure evolution and coercivity mechanism of hydrogenation-disproportionation-desorption-recombination (HDDR) treated Nd-Fe-B strip cast alloys, J. Rare Earths, 40(2022), No. 5, p. 792. doi: 10.1016/j.jre.2021.03.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(1340) PDF Downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return