Xu Wang, Zhengquan Zhang, Yanfang Cui, Wei Li, Congren Yang, Hao Song, Wenqing Qin, and Fen Jiao, Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 71-80. https://doi.org/10.1007/s12613-023-2718-2
Cite this article as:
Xu Wang, Zhengquan Zhang, Yanfang Cui, Wei Li, Congren Yang, Hao Song, Wenqing Qin, and Fen Jiao, Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 71-80. https://doi.org/10.1007/s12613-023-2718-2
Research Article

Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite

+ Author Affiliations
  • Corresponding authors:

    Wenqing Qin    E-mail: qinwenqing369@126.com

    Fen Jiao    E-mail: jfen0601@126.com

  • Received: 31 May 2023Revised: 23 July 2023Accepted: 7 August 2023Available online: 10 August 2023
  • The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement. The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12°C. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures.
  • loading
  • Supplementary Information-10.1007s12613-023-2718-2.docx
  • [1]
    Q.B. Cao, J.H. Cheng, S.M. Wen, C.X. Li, S.J. Bai, and D. Liu, A mixed collector system for phosphate flotation, Miner. Eng., 78(2015), p. 114. doi: 10.1016/j.mineng.2015.04.020
    [2]
    F. Zhou, T. Chen, C.J. Yan, et al., The flotation of low-grade manganese ore using a novel linoleate hydroxamic acid, Colloids Surf. A: Physicochem. Eng. Aspects, 466(2015), p. 1. doi: 10.1016/j.colsurfa.2014.10.055
    [3]
    H.M. Yu, H.J. Wang, and C.Y. Sun, Comparative studies on phosphate ore flotation collectors prepared by hogwash oil from different regions, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 453. doi: 10.1016/j.ijmst.2018.04.010
    [4]
    X.M. Luo, W.Z. Yin, Y.F. Wang, C.Y. Sun, Y.Q. Ma, and J. Liu, Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector, J. Cent. South Univ., 23(2016), No. 3, p. 529. doi: 10.1007/s11771-016-3099-8
    [5]
    X. Wang, W.Q. Qin, F. Jiao, et al., Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China, Trans. Nonferrous Met. Soc. China, 32(2022), No. 7, p. 2318. doi: 10.1016/S1003-6326(22)65950-8
    [6]
    N. Kupka and M. Rudolph, Froth flotation of scheelite—A review, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 373. doi: 10.1016/j.ijmst.2017.12.001
    [7]
    W.H. Jia, W.Q. Qin, C. Chen, H.L. Zhu, and F. Jiao, Collecting performance of vegetable oils in scheelite flotation and differential analysis, J. Cent. South Univ., 26(2019), No. 4, p. 787. doi: 10.1007/s11771-019-4048-0
    [8]
    W.D. Guo, Y.X. Han, Y.M. Zhu, Y.J. Li, and Z.D. Tang, Effect of amide group on the flotation performance of lauric acid, Appl. Surf. Sci., 505(2020), art. No. 144627. doi: 10.1016/j.apsusc.2019.144627
    [9]
    H. Zhang, W.G. Liu, C. Han, and H.Q. Hao, Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate, J. Mol. Liq., 249(2018), p. 1060. doi: 10.1016/j.molliq.2017.11.148
    [10]
    J.F. He, C.G. Liu, and Y.K. Yao, Flotation intensification of the coal slime using a new compound collector and the interaction mechanism between the reagent and coal surface, Powder Technol., 325(2018), p. 333. doi: 10.1016/j.powtec.2017.11.034
    [11]
    T. Coward, J.G.M. Lee, and G.S. Caldwell, Harvesting microalgae by CTAB-aided foam flotation increases lipid recovery and improves fatty acid methyl ester characteristics, Biomass Bioenergy, 67(2014), p. 354. doi: 10.1016/j.biombioe.2014.05.019
    [12]
    M. Krasowska, J. Zawala, B.H. Bradshaw-Hajek, J.K. Ferri, and D.A. Beattie, Interfacial characterisation for flotation: 1. solid-liquid interface, Curr. Opin. Colloid Interface Sci., 37(2018), p. 61. doi: 10.1016/j.cocis.2018.06.004
    [13]
    A. Vidyadhar, N. Kumari, and R.P. Bhagat, Adsorption mechanism of mixed collector systems on hematite flotation, Miner. Eng., 26(2012), p. 102. doi: 10.1016/j.mineng.2011.11.005
    [14]
    J. Tian, L.H. Xu, W. Deng, H. Jiang, Z.Y. Gao, and Y.H. Hu, Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system, Chem. Eng. Sci., 164(2017), p. 99. doi: 10.1016/j.ces.2017.02.013
    [15]
    D. López-Díaz, I. García-Mateos, and M.M. Velázquez, Synergism in mixtures of zwitterionic and ionic surfactants, Colloids Surf. A: Physicochem. Eng. Aspects, 270-271(2005), p. 153. doi: 10.1016/j.colsurfa.2005.05.054
    [16]
    W.H. Jia, F. Jiao, H.L. Zhu, L. Xu, and W.Q. Qin, Mitigating the negative effects of feldspar slime on spodumene flotation using mixed anionic/cationic collector, Miner. Eng., 168(2021), art. No. 106813. doi: 10.1016/j.mineng.2021.106813
    [17]
    L.O. Filippov, I.V. Filippova, Z. Lafhaj, and D. Fornasiero, The role of a fatty alcohol in improving calcium minerals flotation with oleate, Colloids Surf. A: Physicochem. Eng. Aspects, 560(2019), p. 410. doi: 10.1016/j.colsurfa.2018.10.022
    [18]
    H. Sis and S. Chander, Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants, Miner. Eng., 16(2003), No. 7, p. 587. doi: 10.1016/S0892-6875(03)00137-7
    [19]
    K. Theander and R.J. Pugh, Synergism and foaming properties in mixed nonionic/fatty acid soap surfactant systems, J. Colloid Interface Sci., 267(2003), No. 1, p. 9. doi: 10.1016/S0021-9797(03)00482-X
    [20]
    C. Chen, H.L. Zhu, W. Sun, Y.H. Hu, W.Q. Qin, and R.Q. Liu, Synergetic effect of the mixed anionic/non-ionic collectors in low temperature flotation of scheelite, Minerals, 7(2017), No. 6, art. No. 87. doi: 10.3390/min7060087
    [21]
    W.H. Sun, W.G. Liu, S.J. Dai, T. Yang, H. Duan, and W.B. Liu, Effect of Tween 80 on flotation separation of magnesite and dolomite using NaOL as the collector, J. Mol. Liq., 315(2020), art. No. 113712. doi: 10.1016/j.molliq.2020.113712
    [22]
    Z.Y. Liu, Z.C. Xu, H. Zhou, et al., Interfacial behaviors of betaine and binary betaine/carboxylic acid mixtures in molecular dynamics simulation, J. Mol. Liq., 240(2017), p. 412. doi: 10.1016/j.molliq.2017.05.094
    [23]
    J.B. Yang and J.R. Hou, Synthesis of erucic amide propyl betaine compound fracturing fluid system, Colloids Surf. A: Physicochem. Eng. Aspects, 602(2020), art. No. 125098. doi: 10.1016/j.colsurfa.2020.125098
    [24]
    X.L. Lu, M. Zhang, L. Xie, and Q. Zhou, Coagulative colloidal gas aphrons generated from polyaluminum chloride (PACl)/dodecyl dimethyl betaine (BS-12) solution: Interfacial characteristics and flotation potential, Colloids Surf. A: Physicochem. Eng. Aspects, 530(2017), p. 209. doi: 10.1016/j.colsurfa.2017.07.058
    [25]
    Z.H. Zhou, D.S. Ma, Q. Zhang, et al., Surface dilational rheology of betaine surfactants: Effect of molecular structures, Colloids Surf. A: Physicochem. Eng. Aspects, 538(2018), p. 739. doi: 10.1016/j.colsurfa.2017.11.064
    [26]
    W.Y. Shao, J.Y. Zhang, K. Wang, C.R. Liu, and S.M. Cui, Cocamidopropyl betaine-assisted foam separation of freshwater microalgae Desmodesmus brasiliensis, Biochem. Eng. J., 140(2018), p. 38.
    [27]
    X. Wang, W.Q. Qin, F. Jiao, et al., Review on development of low-grade scheelite recovery from molybdenum tailings in Luanchuan, China: A case study of Luoyang Yulu Mining Company, Trans. Nonferrous Met. Soc. China, 32(2022), No. 3, p. 980. doi: 10.1016/S1003-6326(22)65848-5
    [28]
    X. Wang, W.H. Jia, C.R. Yang, et al., Innovative application of sodium tripolyphosphate for the flotation separation of scheelite from calcite, Miner. Eng., 170(2021), art. No. 106981. doi: 10.1016/j.mineng.2021.106981
    [29]
    N. Kupka and M. Rudolph, Role of sodium carbonate in scheelite flotation—A multi-faceted reagent, Miner. Eng., 129(2018), p. 120. doi: 10.1016/j.mineng.2018.09.005
    [30]
    Y. Foucaud, L. Filippov, I. Filippova, and M. Badawi, The challenge of tungsten skarn processing by froth flotation: A review, Front. Chem., 8(2020), art. No. 230. doi: 10.3389/fchem.2020.00230
    [31]
    X. Wang, H. Song, F. Jiao, et al., Utilization of wastewater from zeolite production in synthesis of flotation reagents, Trans. Nonferrous Met. Soc. China, 30(2020), No. 11, p. 3093. doi: 10.1016/S1003-6326(20)65445-0
    [32]
    T. Gaudin, P. Rotureau, I. Pezron, and G. Fayet, Investigating the impact of sugar-based surfactants structure on surface tension at critical micelle concentration with structure-property relationships, J. Colloid Interface Sci., 516(2018), p. 162. doi: 10.1016/j.jcis.2018.01.051
    [33]
    E. Calvo, R. Bravo, A. Amigo, and J. Gracia-Fadrique, Dynamic surface tension, critical micelle concentration, and activity coefficients of aqueous solutions of nonyl phenol ethoxylates, Fluid Phase Equilib., 282(2009), No. 1, p. 14. doi: 10.1016/j.fluid.2009.04.016
    [34]
    J. Church, M.R. Willner, B.R. Renfro, et al., Impact of interfacial tension and critical micelle concentration on bilgewater oil separation, J. Water Process. Eng., 39(2021), art. No. 101684. doi: 10.1016/j.jwpe.2020.101684
    [35]
    A. Pal, R. Punia, and G.P. Dubey, Formation of mixed micelles in an aqueous mixture of a biamphiphilic surface active ionic liquid and an anionic surfactant: Experimental and theoretical study, J. Mol. Liq., 337(2021), art. No. 116355. doi: 10.1016/j.molliq.2021.116355
    [36]
    S.M.S. Hussain, M.S. Kamal, and L.T. Fogang, Synthesis and physicochemical investigation of betaine type polyoxyethylene zwitterionic surfactants containing different ionic headgroups, J. Mol. Struct., 1178(2019), p. 83. doi: 10.1016/j.molstruc.2018.09.094
    [37]
    A. Atrafi and M. Pawlik, Foamability of fatty acid solutions and surfactant transfer between foam and solution phases, Miner. Eng., 100(2017), p. 99. doi: 10.1016/j.mineng.2016.10.012
    [38]
    Y.F. Cui, F. Jiao, Q. Wei, X. Wang, and L.Y. Dong, Flotation separation of fluorite from calcite using sulfonated lignite as depressant, Sep. Purif. Technol., 242(2020), art. No. 116698. doi: 10.1016/j.seppur.2020.116698
    [39]
    X. Wang, F. Jiao, W.Q. Qin, et al., Sulfonated brown coal: A novel depressant for the selective flotation of scheelite from calcite, Colloids Surf. A: Physicochem. Eng. Aspects, 602(2020), art. No. 125006. doi: 10.1016/j.colsurfa.2020.125006
    [40]
    Q.Y. Meng, Q.M. Feng, and L.M. Ou, Flotation behavior and adsorption mechanism of fine wolframite with octyl hydroxamic acid, J. Cent. South Univ., 23(2016), No. 6, p. 1339. doi: 10.1007/s11771-016-3185-y
    [41]
    G. Güler, R.M. Gärtner, C. Ziegler, and W. Mäntele, Lipid-protein interactions in the regulated betaine symporter BetP probed by infrared spectroscopy, J. Biol. Chem., 291(2016), No. 9, p. 4295. doi: 10.1074/jbc.M114.621979
    [42]
    C. Harbeck, R. Faurie, and T. Scheper, Application of near-infrared spectroscopy in the sugar industry for the detection of betaine, Anal. Chim. Acta, 501(2004), No. 2, p. 249. doi: 10.1016/j.aca.2003.09.032
    [43]
    H. Kumar, J. Kaur, and P. Awasthi, Scrutinizing the micellization behaviour of 14-2-14 gemini surfactant and tetradecyltrimethylammonium bromide in aqueous solutions of betaine hydrochloride drug, J. Mol. Liq., 338(2021), art. No. 116642. doi: 10.1016/j.molliq.2021.116642
    [44]
    C.H. Zhang, Y.H. Hu, W. Sun, J.H. Zhai, Z.G. Yin, and Q.J. Guan, Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation, Colloids Surf. A: Physicochem. Eng. Aspects, 573(2019), p. 80. doi: 10.1016/j.colsurfa.2019.04.044
    [45]
    W.P. Yan, C. Liu, G.H. Ai, Q.M. Feng, and W.C. Zhang, Flotation separation of scheelite from calcite using mixed collectors, Int. J. Miner. Process., 169(2017), p. 106. doi: 10.1016/j.minpro.2017.10.009
    [46]
    C. Wang, S. Ren, W. Sun, et al., Selective flotation of scheelite from calcite using a novel self-assembled collector, Miner. Eng., 171(2021), art. No. 107120. doi: 10.1016/j.mineng.2021.107120
    [47]
    Z.Y. Gao, Z.Y. Jiang, W. Sun, et al., New role of the conventional foamer sodium N-lauroylsarcosinate as a selective collector for the separation of calcium minerals, J. Mol. Liq., 318(2020), art. No. 114031. doi: 10.1016/j.molliq.2020.114031
    [48]
    F. Jiao, L.Y. Dong, W.Q. Qin, W. Liu, and C.Q. Hu, Flotation separation of scheelite from calcite using pectin as depressant, Miner. Eng., 136(2019), p. 120. doi: 10.1016/j.mineng.2019.03.019
    [49]
    Q. Wei, L.Y. Dong, F. Jiao, and W.Q. Qin, Selective flotation separation of fluorite from calcite by using sesbania gum as depressant, Miner. Eng., 174(2021), art. No. 107239. doi: 10.1016/j.mineng.2021.107239
    [50]
    S.F. Burlatsky, V.V. Atrazhev, D.V. Dmitriev, et al., Surface tension model for surfactant solutions at the critical micelle concentration, J. Colloid Interface Sci., 393(2013), p. 151. doi: 10.1016/j.jcis.2012.10.020
    [51]
    Q. Lin, K.H. Liu, Z.G. Cui, X.M. Pei, J.Z. Jiang, and B.L. Song, pH-Responsive Pickering foams stabilized by silica nanoparticles in combination with trace amount of dodecyl dimethyl carboxyl betaine, Colloids Surf. A: Physicochem. Eng. Aspects, 544(2018), p. 44. doi: 10.1016/j.colsurfa.2018.02.027
    [52]
    A. Atrafi, C.O. Gomez, J.A. Finch, and M. Pawlik, Frothing behavior of aqueous solutions of oleic acid, Miner. Eng., 36-38(2012), p. 138. doi: 10.1016/j.mineng.2012.03.020
    [53]
    C. Da, S. Alzobaidi, G.Q. Jian, et al., Carbon dioxide/water foams stabilized with a zwitterionic surfactant at temperatures up to 150°C in high salinity brine, J. Petrol. Sci. Eng., 166(2018), p. 880. doi: 10.1016/j.petrol.2018.03.071
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Share Article

    Article Metrics

    Article Views(1051) PDF Downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return