Bojian Chen, Tao Jiang, Jing Wen, Guangdong Yang, Tangxia Yu, Fengxiang Zhu,  and Peng Hu, High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 498-507. https://doi.org/10.1007/s12613-023-2719-1
Cite this article as:
Bojian Chen, Tao Jiang, Jing Wen, Guangdong Yang, Tangxia Yu, Fengxiang Zhu,  and Peng Hu, High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 498-507. https://doi.org/10.1007/s12613-023-2719-1
Research Article

High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets

+ Author Affiliations
  • Corresponding authors:

    Tao Jiang    E-mail: jiangt@smm.neu.edu.cn

    Jing Wen    E-mail: wenjing@smm.neu.edu.cn

  • Received: 4 July 2023Revised: 24 July 2023Accepted: 7 August 2023Available online: 10 August 2023
  • High-chromium vanadium–titanium magnetite (HVTM) is a crucial polymetallic-associated resource to be developed. The all-pellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future. By referencing the production data of vanadium–titanium magnetite blast furnaces, this study explored the softening–melting behavior of high-chromium vanadium–titanium magnetite and obtained the optimal integrated burden based on flux pellets. The results show that the burden with a composition of 70wt% flux pellets and 30wt% acid pellets exhibits the best softening–melting properties. In comparison to that of the single burden, the softening–melting characteristic temperature of this burden composition was higher. The melting interval first increased from 307 to 362°C and then decreased to 282°C. The maximum pressure drop (ΔPmax) decreased from 26.76 to 19.01 kPa. The permeability index (S) dropped from 4643.5 to 2446.8 kPa·°C. The softening–melting properties of the integrated burden were apparently improved. The acid pellets played a role in withstanding load during the softening process. The flux pellets in the integrated burden exhibited a higher slag melting point, which increased the melting temperature during the melting process. The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden. The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening–melting properties of the integrated burden.
  • loading
  • [1]
    R.Q. Zeng, W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Influence and mechanism of CaO on the oxidation induration of hongge vanadium titanomagnetite pellets, ISIJ Int., 60(2020), No. 10, p. 2199. doi: 10.2355/isijinternational.ISIJINT-2020-091
    [2]
    S.T. Yang, M. Zhou, X.X. Xue, T. Jiang, and C.Y. Sun, Isothermal reduction kinetics of chromium-bearing vanadium–titanium sinter reduced with CO gas at 1173 K, JOM, 71(2019), No. 8, p. 2812. doi: 10.1007/s11837-019-03533-5
    [3]
    L.H. Zhang, S.T. Yang, W.D. Tang, and X.X. Xue, Investigations of MgO on sintering performance and metallurgical property of high-chromium vanadium-titanium magnetite, Minerals, 9(2019), No. 5, art. No. 324. doi: 10.3390/min9050324
    [4]
    B.J. Chen, J. Wen, T. Jiang, L. Li, G.D. Yang, and T. Zhao, Phase evolution behavior and oxidation induration mechanism of high-chromium vanadium–titanium magnetite flux pellets, Metall. Mater. Trans. B, 53(2022), No. 1, p. 178. doi: 10.1007/s11663-021-02353-w
    [5]
    G.J. Cheng, X.F. Zhang, Z.X. Gao, H. Yang, and X.X. Xue, Isothermal reduction behavior and kinetics of Russian high-chromium vanadium-titanium magnetite pellets under gas atmospheres of CO–CO2–N2 and CO–N2 at 873 K–1173 K, Energy Sources Part A, 44(2022), No. 2, p. 5490. doi: 10.1080/15567036.2020.1795309
    [6]
    H.L. Song, J.P. Zhang, and X.X. Xue, Kinetics on chromium-bearing vanadia-titania magnetite smelting with high-basicity pellet, Processes, 9(2021), No. 5, art. No. 811. doi: 10.3390/pr9050811
    [7]
    W.Q. Xu, B. Wan, T.Y. Zhu, and M.P. Shao, CO2 emissions from China’s iron and steel industry, J. Cleaner Prod., 139(2016), p. 1504. doi: 10.1016/j.jclepro.2016.08.107
    [8]
    W. Lv, Z.Q. Sun, and Z.J. Su, Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study, J. Cleaner Prod., 233(2019), No. 1, p.1314. doi: 10.1016/j.jclepro.2019.06.180
    [9]
    Z.C. Guo and Z.X. Fu, Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China, Energy, 35(2010), No. 11, p. 4356. doi: 10.1016/j.energy.2009.04.008
    [10]
    Y. Matsui, A. Sato, T. Oyama, T. Matsuo, S. Kitayama, and R. Ono, All pellets operation in Kobe No. 3 blast furnace under intensive coal injection, ISIJ Int., 43(2003), No. 2, p. 166. doi: 10.2355/isijinternational.43.166
    [11]
    N. Eklund, B. Lindblom, J. Wikström, and B. Björkman, Operation at high pellet ratio and without external slag formers–trials in an experimental blast furnace, Steel Res. Int., 80(2009), No. 6, p. 379. doi: 10.2374/SRI09SP025
    [12]
    P.K. Gupta, A.S. Rao, V.R. Sekhar, M. Ranjan, and T.K. Naha, Burden distribution control and its optimisation under high pellet operation, Ironmaking Steelmaking, 37(2010), No. 3, p. 235. doi: 10.1179/174328109X422566
    [13]
    A. Agrawal, Blast furnace performance under varying pellet proportion, Trans. Indian Inst. Met., 72(2019), No. 3, p. 777. doi: 10.1007/s12666-018-1530-6
    [14]
    C.C. Lan, S.H. Zhang, X.J. Liu, Q. Lyu, and M.F. Jiang, Change and mechanism analysis of the softening–melting behavior of the iron-bearing burden in a hydrogen-rich blast furnace, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14255. doi: 10.1016/j.ijhydene.2020.03.143
    [15]
    Z.M. Chen, S.X. Ye, S.H. Geng, et al., Softening and melting performance of mixed burden under the simulated hydrogen-rich blast furnace atmosphere, Ironmaking Steelmaking 50(2023), No. 5, p. 538.
    [16]
    A. Agrawal, D.J. Gavel, M.B. Shaik, S. Dwarapudi, and I. Paul, Optimum pellet basicity desirable for blast furnace operation, J. Inst. Eng. India Ser. D, 102(2021), No. 1, p. 87. doi: 10.1007/s40033-021-00258-1
    [17]
    G.L. Wang, J. Kang, J.L. Zhang, et al., Softening–melting behavior of mixed burden based on low-magnesium sinter and fluxed pellets, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 621. doi: 10.1007/s12613-020-2047-7
    [18]
    A.V. Pavlov, O.P. Onorin, N.A. Spirin, and A.A. Polinov, MMK blast furnace operation with a high proportion of pellets in a charge. Part 1, Metallurgist, 60(2016), No. 5-6, p. 581. doi: 10.1007/s11015-016-0335-2
    [19]
    A.V. Pavlov, O.P. Onorin, N.A. Spirin and A.A. Polinov, MMK blast furnace operation with a high proportion of pellets in a charge. Part 2, Metallurgist, 60(2016), No. 7-8, p. 653. doi: 10.1007/s11015-016-0346-z
    [20]
    I.S. Bersenev, V.V. Bragin, A.A. Ugarov, et al., Improvement of technical and economic performance of blast-furnace smelting by pellet composition optimization, Steel Transl., 50(2020), No. 3, p. 171. doi: 10.3103/S0967091220030031
    [21]
    A. Chakrabarty, R. Biswas, S. Basu, and S. Nag, Characterisation of binary mixtures of pellets and sinter for DEM simulations, Adv. Powder Technol., 33(2022), No. 1, art. No. 103358. doi: 10.1016/j.apt.2021.11.010
    [22]
    Z.J. Zhao, H. Saxén, Y.J. Liu, X.F. She, and Q.G. Xue, Numerical study on the influence of pellet proportion on burden distribution in blast furnace, Ironmaking Steelmaking, 50(2023), No. 6, p. 613. doi: 10.1080/03019233.2022.2140254
    [23]
    H. Wei, D.N. Mondal, H. Saxén, and Y.W. Yu, Numerical investigation of the radial ore-to-coke ratio in the blast furnace throat during nonuniform burden descent, Steel Res. Int., 94(2023), No. 3, art.No. 2200290. doi: 10.1002/srin.202200290
    [24]
    R. Roeplal, Y.S. Pang, A. Adema, J. van der Stel, and D. Schott, Modelling of phenomena affecting blast furnace burden permeability using the discrete element method (DEM)–A review, Powder Technol., 415(2023), art. No. 118161. doi: 10.1016/j.powtec.2022.118161
    [25]
    G.J. Cheng, X.X. Xue, Z.X. Gao, T. Jiang, H. Yang, and P.N. Duan, Effect of Cr2O3 on the reduction and smelting mechanism of high-chromium vanadium–titanium magnetite pellets, ISIJ Int., 56(2016), No. 11, p. 1938. doi: 10.2355/isijinternational.ISIJINT-2016-234
    [26]
    M.R. Yang, J.Y. Xiang, C.G. Bai, X.G. Zhou, Z.C. Liu, and X.W. Lv, Solid-state reaction and diffusion behaviors of CaFe2O4 and TiO2 at 1373 K to 1473 K, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1436. doi: 10.1007/s11663-021-02111-y
    [27]
    K.K. Bai, L.C. Liu, Y.Z. Pan, H.B. Zuo, J.S. Wang, and Q.G. Xue, A review: Research progress of flux pellets and their application in China, Ironmaking Steelmaking, 48(2021), No. 9, p. 1048. doi: 10.1080/03019233.2021.1911770
    [28]
    B.B. Lyu, G. Wang, L.D. Zhao, H.B. Zuo, Q.G. Xue, and J.S. Wang, Effect of atmosphere and basicity on softening–melting behavior of primary slag formation in cohesive zone, J. Iron Steel Res. Int., 30(2023), No. 2, p. 227. doi: 10.1007/s42243-022-00830-3
    [29]
    Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283. doi: 10.2355/isijinternational.44.1283
    [30]
    T. Jiang, D.M. Liao, M. Zhou, et al., Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 804. doi: 10.1007/s12613-015-1137-4
    [31]
    W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, and Z.W. Ying, High-temperature interactions between vanadium–titanium magnetite carbon composite hot briquettes and pellets under simulated blast furnace conditions, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1878. doi: 10.1007/s11663-019-01616-x
    [32]
    Q.Q. Hu, D.L. Ma, K. Zhou, et al., Phase transformation and slag evolution of vanadium–titanium magnetite pellets during softening–melting process, Powder Technol., 396(2022), p. 710. doi: 10.1016/j.powtec.2021.11.035
    [33]
    S. Lee and D.J. Min, Viscous behavior of FeO-bearing slag melts considering structure of slag, Steel Res. Int., 89(2018), No. 8, art.No.1800055. doi: 10.1002/srin.201800055
    [34]
    K. Hu, K. Tang, X.W. Lv, J. Safarian, Z.M. Yan, and B. Song, Modeling viscosity of high titania slag, Metall. Mater. Trans. B, 52(2021), No. 1, p. 245.
    [35]
    L.H. Zhang, S.T. Yang, W.D. Tang, H. Yang, and X.X. Xue, Effect of coke breeze content on sintering mechanism and metallurgical properties of high-chromium vanadium–titanium magnetite, Ironmaking Steelmaking, 47(2020), No. 7, p. 821. doi: 10.1080/03019233.2019.1615814
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(7)

    Share Article

    Article Metrics

    Article Views(378) PDF Downloads(34) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return