Cite this article as: |
Hua Zhang, Tuoxiao Wang, Guoyang Zhang, Wenjie Wu, Long Zhao, Tao Liu, Shuai Mo, and Hongwei Ni, Clean production of Fe-based amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore and apatite, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2356-2363. https://doi.org/10.1007/s12613-023-2722-6 |
Tao Liu E-mail: liutao111@wust.edu.cn
Hongwei Ni E-mail: nihongwei@wust.edu.cn
Supplementary Information-s12613-023-2722-6.docx |
[1] |
H. Li, A.D. Wang, T. Liu, et al., Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability, Mater. Today, 42(2021), p. 49. doi: 10.1016/j.mattod.2020.09.030
|
[2] |
J.C. Qiao, Q. Wang, J.M. Pelletier, et al., Structural heterogeneities and mechanical behavior of amorphous alloys, Prog. Mater. Sci., 104(2019), p. 250. doi: 10.1016/j.pmatsci.2019.04.005
|
[3] |
Y.H. Liu, T. Fujita, D.P.B. Aji, M. Matsuura, and M.W. Chen, Structural origins of Johari–Goldstein relaxation in a metallic glass, Nat. Commun., 5(2014), art. No. 3238. doi: 10.1038/ncomms4238
|
[4] |
Z. Li, Z. Huang, F. Sun, X. Li, and J. Ma, Forming of metallic glasses: Mechanisms and processes, Mater. Today Adv., 7(2020), art. No. 100077. doi: 10.1016/j.mtadv.2020.100077
|
[5] |
H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications, Prog. Mater. Sci., 103(2019), p. 235. doi: 10.1016/j.pmatsci.2019.01.003
|
[6] |
F.C. Li, T. Liu, J.Y. Zhang, et al., Amorphous-nanocrystalline alloys: Fabrication, properties, and applications, Mater. Today Adv., 4(2019), art. No. 100027. doi: 10.1016/j.mtadv.2019.100027
|
[7] |
J.M. Silveyra, E. Ferrara, D.L. Huber, and T.C. Monson, Soft magnetic materials for a sustainable and electrified world, Science, 362(2018), No. 6413, art. No. eaao0195. doi: 10.1126/science.aao0195
|
[8] |
E.A. Périgo, B. Weidenfeller, P. Kollár, and J. Füzer, Past, present, and future of soft magnetic composites, Appl. Phys. Rev., 5(2018), No. 3, art. No. 031301. doi: 10.1063/1.5027045
|
[9] |
A. Inoue, A. Katsuya, K. Amiya, and T. Masumoto, Preparation of amorphous Fe–Si–B and Co–Si-B alloy wires by a melt extraction method and their mechanical and magnetic properties, Mater. Trans., JIM, 36(1995), No. 7, p. 802. doi: 10.2320/matertrans1989.36.802
|
[10] |
Y. Ogawa, M. Naoe, Y. Yoshizawa, and R. Hasegawa, Magnetic properties of high Fe-based amorphous material, J. Magn. Magn. Mater., 304(2006), No. 2, p. e675. doi: 10.1016/j.jmmm.2006.02.167
|
[11] |
J.F. Wang, R. Li, N.B. Hua, L. Huang, and T. Zhang, Ternary Fe–P–C bulk metallic glass with good soft-magnetic and mechanical properties, Scripta Mater., 65(2011), No. 6, p. 536. doi: 10.1016/j.scriptamat.2011.06.020
|
[12] |
H. Zhang, S. Mo, L. Yang, T. Liu, Y.N. Wu, and H.W. Ni, Evolution and removal of inclusions in Fe-based amorphous alloys, Metall. Mater. Trans. A, 53(2022), No. 10, p. 3565. doi: 10.1007/s11661-022-06749-4
|
[13] |
H. Jalkanen, Theory of ferroalloys processing, [in] M. Gasik, ed., Handbook of Ferroalloys: Theory and Technology, Butterworth-Heinemann, Oxford, 2013, p. 29.
|
[14] |
S.C. Wu, T.C. Sun, and J. Kou, A novel and clean utilization of converter sludge by co-reduction roasting with high-phosphorus iron ore to produce powdery reduced iron, J. Clean. Prod., 363(2022), art. No. 132362. doi: 10.1016/j.jclepro.2022.132362
|
[15] |
G.Y. Zhang, H. Zhang, S.Q. Yue, et al., Ultra-low cost and energy-efficient production of FePCSi amorphous alloys with pretreated molten iron from a blast furnace, J. Non Cryst. Solids, 514(2019), p. 108. doi: 10.1016/j.jnoncrysol.2019.03.045
|
[16] |
N. Mahata, A. Banerjee, P.K. Rai, et al., Glassy blast furnace pig iron and design of other glassy compositions using thermodynamic calculations, J. Non Cryst. Solids, 484(2018), p. 95. doi: 10.1016/j.jnoncrysol.2018.01.029
|
[17] |
P. Murugaiyan, A. Mitra, R.K. Roy, et al., Glass forming ability and soft-magnetic properties of Fe-based glassy alloys developed using high phosphorous pig Iron, J. Alloys Compd., 821(2020), art. No. 153255. doi: 10.1016/j.jallcom.2019.153255
|
[18] |
K. Quast, A review on the characterisation and processing of oolitic iron ores, Miner. Eng., 126(2018), p. 89. doi: 10.1016/j.mineng.2018.06.018
|
[19] |
W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443. doi: 10.1007/s12613-019-1897-3
|
[20] |
S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796. doi: 10.1016/j.powtec.2020.04.047
|
[21] |
G.Y. Zhang, H.W. Ni, Y. Li, T. Liu, A.D. Wang, and H. Zhang, Resource-saving production of Fe-based amorphous alloys from carbothermal reduction of high-phosphorus oolitic iron ore, J. Non Cryst. Solids, 579(2022), art. No. 121365. doi: 10.1016/j.jnoncrysol.2021.121365
|
[22] |
B.B. Liu, Y.B. Xue, G.H. Han, et al., An alternative and clean utilisation of refractory high-phosphorus oolitic hematite: P for crop fertiliser and Fe for ferrite ceramic, J. Clean. Prod., 299(2021), art. No. 126889. doi: 10.1016/j.jclepro.2021.126889
|
[23] |
Y.B. Chen and H. Zuo, Gasification behavior of phosphorus during pre-reduction sintering of medium-high phosphorus iron ore, ISIJ Int., 61(2021), No. 5, p. 1459. doi: 10.2355/isijinternational.ISIJINT-2020-564
|
[24] |
M. Tangstad, Ferrosilicon and silicon technology, [in] M. Gasik, ed., Handbook of Ferroalloys: Theory and Technology, Butterworth-Heinemann, Oxford, 2013, p. 179.
|
[25] |
L.X. Shi, X.Y. Hu, Y.H. Li, G.T. Yuan, and K.F. Yao, The complementary effects of Fe and metalloids on the saturation magnetization of Fe-based amorphous alloys, Intermetallics, 131(2021), art. No. 107116. doi: 10.1016/j.intermet.2021.107116
|
[26] |
H. Zhang, Y.N. Wu, J. Zeng, T. Liu, S. Mo, and H.W. Ni, Calculation assisted composition design of Fe-based amorphous alloys, J. Non Cryst. Solids, 600(2023), art. No. 122011. doi: 10.1016/j.jnoncrysol.2022.122011
|
[27] |
K.I. Ohno, T. Miki, Y. Sasaki, and M. Hino, Carburization degree of iron nugget produced by rapid heating of powdery iron, iron oxide in slag and carbon mixture, ISIJ Int., 48(2008), No. 10, p. 1368. doi: 10.2355/isijinternational.48.1368
|
[28] |
T. Murakami, M. Ohno, K. Suzuki, K. Owaki, and E. Kasai, Acceleration of carburization and melting of reduced iron in iron ore–carbon composite using different types of carbonaceous materials, ISIJ Int., 57(2017), No. 11, p. 1928. doi: 10.2355/isijinternational.ISIJINT-2017-249
|
[29] |
J.G. Kang, J.H. Shin, Y. Chung, and J.H. Park, Effect of slag chemistry on the desulfurization kinetics in secondary refining processes, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2123. doi: 10.1007/s11663-017-0948-2
|
[30] |
S.C. Wu, Z.Y. Li, T.C. Sun, J. Kou, and X.H. Li, Effect of additives on iron recovery and dephosphorization by reduction roasting-magnetic separation of refractory high-phosphorus iron ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1908. doi: 10.1007/s12613-021-2329-8
|
[31] |
Y.S. Sun, Y.F. Li, Y.X. Han, and Y.J. Li, Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 938. doi: 10.1007/s12613-019-1810-0
|
[32] |
G.R. Surup, A. Trubetskaya, and M. Tangstad, Charcoal as an alternative reductant in ferroalloy production: A review, Processes, 8(2020), No. 11, art. No. 1432. doi: 10.3390/pr8111432
|
[33] |
J. Zhao, H.B. Zuo, Y.J. Wang, J.S. Wang, and Q.G. Xue, Review of green and low-carbon ironmaking technology, Ironmaking Steelmaking, 47(2020), No. 3, p. 296. doi: 10.1080/03019233.2019.1639029
|
[34] |
A. Hasanbeigi, M. Arens, and L. Price, Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review, Renewable Sustainable Energy Rev., 33(2014), p. 645. doi: 10.1016/j.rser.2014.02.031
|
[35] |
C.Z. Cao, Y.J. Meng, F.X. Yan, D.W. Zhang, X. Li, and F.M. Zhang, Analysis on energy efficiency and optimization of HISMElt process, [in] T. Wang, X.B. Chen, D.P. Guillen, et al., eds., Energy Technology 2019: Carbon Dioxide Management and Other Technologies, Springer, Switzerland, 2019, p. 3.
|
[36] |
R.Y. An, B.Y. Yu, R. Li, and Y.M. Wei, Potential of energy savings and CO2 emission reduction in China’s iron and steel industry, Appl. Energy, 226(2018), p. 862. doi: 10.1016/j.apenergy.2018.06.044
|