Yang Xue, Xiaoming Liu, Na Zhang, Yang Shao,  and Chunbao (Charles) Xu, Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2364-2374. https://doi.org/10.1007/s12613-023-2723-5
Cite this article as:
Yang Xue, Xiaoming Liu, Na Zhang, Yang Shao,  and Chunbao (Charles) Xu, Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2364-2374. https://doi.org/10.1007/s12613-023-2723-5
Research Article

Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism

+ Author Affiliations
  • Corresponding authors:

    Xiaoming Liu    E-mail: liuxm@ustb.edu.cn

    Na Zhang    E-mail: nazhang@cugb.edu.cn

    Chunbao (Charles) Xu    E-mail: cxu6@uwo.ca

  • Received: 26 March 2023Revised: 7 August 2023Accepted: 9 August 2023Available online: 10 August 2023
  • Photocatalytic processes are efficient methods to solve water contamination problems, especially considering dyeing wastewater disposal. However, high-efficiency photocatalysts are usually very expensive and have the risk of heavy metal pollution. Recently, an iron oxides@hydrothermal carbonation carbon (HTCC) heterogeneous catalyst was prepared by our group through co-hydrothermal treatment of carbohydrates and zinc extraction tailings of converter dust. Herein, the catalytic performance of the iron oxides@HTCC was verified by a non-biodegradable dye, methylene blue (MB), and the catalytic mechanism was deduced from theoretical simulations and spectroscopic measurements. The iron oxides@HTCC showed an excellent synergy between photocatalysis and Fenton-like reactions. Under visible-light illumination, the iron oxides@HTCC could be excited to generate electrons and holes, reacting with H2O2 to produce $\cdot\mathrm{O}\mathrm{H}$ radicals to oxidize and decompose organic pollutants. The removal efficiency of methylene blue over iron oxides@HTCC at 140 min was 2.86 times that of HTCC. The enhanced catalytic performance was attributed to the advantages of iron oxides modification: (1) promoting the excitation induced by photons; (2) improving the charge transfer. Furthermore, the iron oxides@HTCC showed high catalytic activity in a wide pH value range of 2.3–10.4, and the MB removal efficiency remained higher than 95% after the iron oxides@HTCC was recycled 4 times. The magnetically recyclable iron oxides@HTCC may provide a solution for the treatment of wastewater from the textile industry.
  • loading
  • Supplementary Information-10.1007s12613-023-2723-5.docx
  • [1]
    M. Munoz, Z.M. de Pedro, J.A. Casas, and J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation - A review, Appl. Catal. B, 176-177(2015), p. 249. doi: 10.1016/j.apcatb.2015.04.003
    [2]
    P.O. Agboola and I. Shakir, Facile fabrication of SnO2/MoS2/rGO ternary composite for solar light-mediated photocatalysis for water remediation, J. Mater. Res. Technol., 18(2022), p. 4303. doi: 10.1016/j.jmrt.2022.04.109
    [3]
    Y.M. Dong, T. Wang, X.J. Wan, and D.N. He, Washing and dyeing wastewater treatment by combined nano flocculation and photocatalysis processes, J. Geosci. Environ. Prot., 3(2015), No. 2, p. 66.
    [4]
    X.P. Zhang, D. Liu, L. Yang, L.M. Zhou, and T.Y. You, Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis, J. Mater. Chem. A, 3(2015), No. 18, p. 10031. doi: 10.1039/C5TA00355E
    [5]
    A. Muthukrishnaraj, S. Vadivel, V.P. Kamalakannan, and N. Balasubramanian, α-Fe2O3/reduced graphene oxide nanorod as efficient photocatalyst for methylene blue degradation, Mater. Res. Innov., 19(2015), No. 4, p. 258. doi: 10.1179/1433075X14Y.0000000251
    [6]
    Q.Q. Jin, S. Zhang, T. Wen, et al., Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix, Environ. Pollut., 243(2018), p. 218. doi: 10.1016/j.envpol.2018.08.061
    [7]
    B. García-Leiva, L.A.C. Teixeira, and M.L. Torem, Degradation of xanthate in waters by hydrogen peroxide, Fenton and simulated solar photo-Fenton processes, J. Mater. Res. Technol., 8(2019), No. 6, p. 5698. doi: 10.1016/j.jmrt.2019.09.037
    [8]
    A. Almahri, The solid-state synthetic performance of bentonite stacked manganese ferrite nanoparticles: Adsorption and photo-Fenton degradation of MB dye and antibacterial applications, J. Mater. Res. Technol., 17(2022), p. 2935. doi: 10.1016/j.jmrt.2022.02.052
    [9]
    S. Elkhalifa, T. Al-Ansari, H.R. Mackey, and G. McKay, Food waste to biochars through pyrolysis: A review, Resour. Conserv. Recycl., 144(2019), p. 310. doi: 10.1016/j.resconrec.2019.01.024
    [10]
    P. Bhavani, M. Hussain, and Y.K. Park, Recent advancements on the sustainable biochar based semiconducting materials for photocatalytic applications: A state of the art review, J. Clean. Prod., 330(2022), art. No. 129899. doi: 10.1016/j.jclepro.2021.129899
    [11]
    Z.F. Hu, Z.R. Shen, and J.C. Yu, Converting carbohydrates to carbon-based photocatalysts for environmental treatment, Environ. Sci. Technol., 51(2017), No. 12, p. 7076. doi: 10.1021/acs.est.7b00118
    [12]
    G.L. Wang, W.X. Bi, Q.M. Zhang, X.L. Dong, and X.F. Zhang, Hydrothermal carbonation carbon-based photocatalysis under visible light: Modification for enhanced removal of organic pollutant and novel insight into the photocatalytic mechanism, J. Hazard. Mater., 426(2022), art. No. 127821. doi: 10.1016/j.jhazmat.2021.127821
    [13]
    Y. Xue, X.M. Liu, N. Zhang, S. Guo, Z.Q. Xie, and C.B. Xu, A novel process for the treatment of steelmaking converter dust: Selective leaching and recovery of zinc sulfate and synthesis of iron oxides@HTCC photocatalysts by carbonizing carbohydrates, Hydrometallurgy, 217(2023), art. No. 106039. doi: 10.1016/j.hydromet.2023.106039
    [14]
    O. Kazak and A. Tor, In situ preparation of magnetic hydrochar by co-hydrothermal treatment of waste vinasse with red mud and its adsorption property for Pb(II) in aqueous solution, J. Hazard. Mater., 393(2020), art. No. 122391. doi: 10.1016/j.jhazmat.2020.122391
    [15]
    F.F. Wang, X.L. Yu, M.F. Ge, et al., Facile self-assembly synthesis of γ-Fe2O3/graphene oxide for enhanced photo-Fenton reaction, Environ. Pollut., 248(2019), p. 229. doi: 10.1016/j.envpol.2019.01.018
    [16]
    C. Lai, X.X. Shi, L. Li, et al., Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review, Sci. Total Environ., 775(2021), art. No. 145850. doi: 10.1016/j.scitotenv.2021.145850
    [17]
    W.M. Alamier, N. Hasan, M.S. Nawaz, K.S. Ismail, M. Shkir, M. Ahmad Malik, and M.D.Y. Oteef, Biosynthesis of NiFe2O4 nanoparticles using Murayya koenigii for photocatalytic dye degradation and antibacterial application, J. Mater. Res. Technol., 22(2023), p. 1331. doi: 10.1016/j.jmrt.2022.11.181
    [18]
    U. Mahanta, M. Khandelwal, and A.S. Deshpande, TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light, Appl. Surf. Sci., 576(2022), art. No. 151745. doi: 10.1016/j.apsusc.2021.151745
    [19]
    H.X. Yan, Y.S. Pan, X.B. Liao, et al., Enhancement of Fe2+/Fe3+ cycles by the synergistic effect between photocatalytic and co-catalytic of ZnxCd1−xS on photo-Fenton system, Appl. Surf. Sci., 576(2022), art. No. 151881. doi: 10.1016/j.apsusc.2021.151881
    [20]
    S. Lu, G.L. Wang, S. Chen, H.T. Yu, F. Ye, and X. Quan, Heterogeneous activation of peroxymonosulfate by LaCo1−xCuxO3 perovskites for degradation of organic pollutants, J. Hazard. Mater., 353(2018), p. 401. doi: 10.1016/j.jhazmat.2018.04.021
    [21]
    M.M. Ding, W. Chen, H. Xu, et al., Novel α-Fe2O3/MXene nanocomposite as heterogeneous activator of peroxymonosulfate for the degradation of salicylic acid, J. Hazard. Mater., 382(2020), art. No. 121064. doi: 10.1016/j.jhazmat.2019.121064
    [22]
    R. Luo, C. Liu, J.S. Li, et al., Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate, J. Hazard. Mater., 329(2017), p. 92. doi: 10.1016/j.jhazmat.2017.01.032
    [23]
    T. Li, X.M. Wang, Y.M. Chen, J.R. Liang, and L.X. Zhou, Producing $ \cdot\mathrm{O}\mathrm{H} $, $ {\mathrm{S}\mathrm{O}}_{4}^{\cdot{-}} $ and $ {\cdot\mathrm{O}}_{2}^{-} $ in heterogeneous Fenton reaction induced by Fe3O4-modified schwertmannite, Chem. Eng. J., 393(2020), art. No. 124735. doi: 10.1016/j.cej.2020.124735
    [24]
    Y.J. Choe, J.S. Kim, H. Kim, and J. Kim, Open Ni site coupled with $ {\mathrm{S}\mathrm{O}}_{4}^{2-} $ functionality to prompt the radical interconversion of $ \cdot \mathrm{O}\mathrm{H} $ ↔ $ {\mathrm{S}\mathrm{O}}_{4}^{\cdot{-}} $ exploited to decompose refractory pollutants, Chem. Eng. J., 400(2020), art. No. 125971. doi: 10.1016/j.cej.2020.125971
    [25]
    B. Yang, Z. Tian, L. Zhang, Y.P. Guo, and S.Q. Yan, Enhanced heterogeneous Fenton degradation of Methylene Blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide, J. Water Process. Eng., 5(2015), p. 101. doi: 10.1016/j.jwpe.2015.01.006
    [26]
    J. Zhou, D.D. Nie, X.B. Jin, and W. Xiao, Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1703. doi: 10.1007/s12613-020-2050-z
    [27]
    H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244. doi: 10.1007/s12613-018-1567-x
    [28]
    M. Kitano, M. Takeuchi, M. Matsuoka, J.M. Thomas, and M. Anpo, Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts, Catal. Today, 120(2007), No. 2, p. 133. doi: 10.1016/j.cattod.2006.07.043
    [29]
    G.J. Ai, H.X. Li, S.P. Liu, R. Mo, and J.X. Zhong, Solar water splitting by TiO2/CdS/Co–Pi nanowire array photoanode enhanced with Co–Pi as hole transfer relay and CdS as light absorber, Adv. Funct. Mater., 25(2015), No. 35, p. 5706. doi: 10.1002/adfm.201502461
    [30]
    C. Han, M. Pelaez, V. Likodimos, et al., Innovative visible light-activated sulfur doped TiO2 films for water treatment, Appl. Catal. B, 107(2011), No. 1-2, p. 77. doi: 10.1016/j.apcatb.2011.06.039
    [31]
    R.D. Su, S.H. Ge, H. Li, et al., Synchronous synthesis of Cu2O/Cu/rGO@carbon nanomaterials photocatalysts via the sodium alginate hydrogel template method for visible light photocatalytic degradation, Sci. Total Environ., 693(2019), art. No. 133657. doi: 10.1016/j.scitotenv.2019.133657
    [32]
    R. Gao, Z.Y. Wang, S. Liu, G.J. Shao, and X.P. Gao, Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 990. doi: 10.1007/s12613-022-2451-2
    [33]
    Z.X. Cui, L. Zhang, Y.Q. Xue, et al., Effects of shape and particle size on the photocatalytic kinetics and mechanism of nano-CeO2, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2221. doi: 10.1007/s12613-021-2332-0
    [34]
    S.Y. Luo, S.P. Li, S. Zhang, Z.Y. Cheng, T.T. Nguyen, and M.H. Guo, Visible-light-driven Z-scheme protonated g-C3N4/wood flour biochar/BiVO4 photocatalyst with biochar as charge-transfer channel for enhanced RhB degradation and Cr(VI) reduction, Sci. Total Environ., 806(2022), art. No. 150662. doi: 10.1016/j.scitotenv.2021.150662
    [35]
    Y.P. Li, X. Bian, X. Jin, P. Cen, W.Y. Wu, and G.F. Fu, Characterization and ultraviolet—Visible shielding property of samarium—Cerium compounds containing Sm2O2S prepared by co-precipitation method, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1809. doi: 10.1007/s12613-021-2309-z
    [36]
    X.H. Zhang, B.Y. Lin, X.Y. Li, X. Wang, K.Z. Huang, and Z.H. Chen, MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal, Chem. Eng. J., 430(2022), art. No. 132728. doi: 10.1016/j.cej.2021.132728
    [37]
    G.F. Liao, Y. Gong, L. Zhang, H.Y. Gao, G.J. Yang, and B.Z. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci., 12(2019), No. 7, p. 2080. doi: 10.1039/C9EE00717B
    [38]
    Q.H. Zhu, K. Zhang, D.Q. Li, et al., Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review, Chem. Eng. J., 426(2021), art. No. 131681. doi: 10.1016/j.cej.2021.131681
    [39]
    T. Zhang, Y.W. Zhang, S.Z. Zhang, G.Q. Chen, and Z.L. Hong, Research and applications of visible light responsive narrow band gap semiconductor photocatalytic materials, Mater. Rev., 23(2009), No. 3, p. 24.
    [40]
    Q. Liu, X.L. Wang, Q. Yang, Z.G. Zhang, and X.M. Fang, A novel route combined precursor-hydrothermal pretreatment with microwave heating for preparing holey g-C3N4 nanosheets with high crystalline quality and extended visible light absorption, Appl. Catal. B, 225(2018), p. 22. doi: 10.1016/j.apcatb.2017.11.044
    [41]
    L. Qian, F.D. Kopinke, and A. Georgi, Photodegradation of perfluorooctanesulfonic acid on Fe–zeolites in water, Environ. Sci. Technol., 55(2021), No. 1, p. 614. doi: 10.1021/acs.est.0c04558
    [42]
    B. Zhang, J.S. Xiao, S.Q. Jiao, and H.M. Zhu, Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 787. doi: 10.1007/s12613-022-2421-8
    [43]
    X.C. Wang, K. Maeda, A. Thomas, et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8(2009), No. 1, p. 76. doi: 10.1038/nmat2317
    [44]
    Y.W. Pan, R. Qin, M.H. Hou, et al., The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions, Sep. Purif. Technol., 300(2022), art. No. 121831. doi: 10.1016/j.seppur.2022.121831
    [45]
    Y. Xue and X.M. Liu, Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review, Chem. Eng. J., 420(2021), art. No. 130349. doi: 10.1016/j.cej.2021.130349
    [46]
    C. Miao, L.X. Liang, F. Zhang, et al., Review of the fabrication and application of porous materials from silicon-rich industrial solid waste, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 424. doi: 10.1007/s12613-021-2360-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(791) PDF Downloads(84) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return