Cite this article as: |
Ge Chu, Chaohui Wang, Zhewei Yang, Lin Qin, and Xin Fan, MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 395-404. https://doi.org/10.1007/s12613-023-2726-2 |
Zhewei Yang E-mail: yangzhewei@tyut.edu.cn
Xin Fan E-mail: xfan@glut.edu.cn
Supplementary Information-s12613-023-2726-2.docx |
[1] |
X.L. Yi, X.H. Li, J. Zhong, et al., Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode, Adv. Funct. Mater., 32(2022), No. 48, art. No. 2209523. doi: 10.1002/adfm.202209523
|
[2] |
C.Y. Wang, T. Liu, X.G. Yang, et al., Fast charging of energy-dense lithium-ion batteries, Nature, 611(2022), No. 7936, p. 485. doi: 10.1038/s41586-022-05281-0
|
[3] |
Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
|
[4] |
X.D. Wang, R.B. Yu, C. Zhan, W. Wang, and X. Liu, Editorial for special issue on advanced energy storage and materials for the 70th Anniversary of USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 905. doi: 10.1007/s12613-022-2490-8
|
[5] |
U. Bhattacharjee, S. Bhowmik, S. Ghosh, and S.K. Martha, Effect of in situ derived sulfur dispersion on dual carbon lithium-ion capacitors, J. Power Sources, 542(2022), art. No. 231768. doi: 10.1016/j.jpowsour.2022.231768
|
[6] |
S.Y. Dong, N. Lv, Y.L. Wu, G.Y. Zhu, and X.C. Dong, Lithium-ion and sodium-ion hybrid capacitors: From insertion-type materials design to devices construction, Adv. Funct. Mater., 31(2021), No. 21, art. No. 2100455. doi: 10.1002/adfm.202100455
|
[7] |
P. Naskar, D. Kundu, A. Maiti, P. Chakraborty, B. Biswas, and A. Banerjee, Frontiers in hybrid ion capacitors: A review on advanced materials and emerging devices, ChemElectroChem, 8(2021), No. 8, p. 1390. doi: 10.1002/celc.202100325
|
[8] |
J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
|
[9] |
D. Lei, Z.D. Hou, N. Li, et al., A homologous N/P-codoped carbon strategy to streamline nanostructured MnO/C and carbon toward boosted lithium-ion capacitors, Carbon, 201(2023), p. 260. doi: 10.1016/j.carbon.2022.09.019
|
[10] |
G.Y. Zhang, K. Sun, Y.Y. Liu, et al., Double reaction initiated self-assembly process fabricated hard carbon with high power capability for lithium-ion capacitor anodes, Appl. Surf. Sci., 609(2023), art. No. 155083. doi: 10.1016/j.apsusc.2022.155083
|
[11] |
Z.W. Yang, H.J. Guo, X.H. Li, et al., Graphitic carbon balanced between high plateau capacity and high rate capability for lithium-ion capacitors, J. Mater. Chem. A, 5(2017), No. 29, p. 15302. doi: 10.1039/C7TA03862C
|
[12] |
J. Zhang, H.Z. Wu, J. Wang, J.L. Shi, and Z.Q. Shi, Pre-lithiation design and lithium-ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors, Electrochim. Acta, 182(2015), p. 156. doi: 10.1016/j.electacta.2015.09.074
|
[13] |
S.D. Liu, L. Kang, J. Zhang, S.C. Jun, and Y. Yamauchi, Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors, ACS Energy Lett., 6(2021), No. 11, p. 4127. doi: 10.1021/acsenergylett.1c01855
|
[14] |
M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
|
[15] |
M.Y. Gao, Y.C. Xue, Y.T. Zhang, et al., Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front., 9(2022), No. 15, p. 3933. doi: 10.1039/D2QI00695B
|
[16] |
W. Yang, W. Yang, F. Zhang, G.X. Wang, and G.J. Shao, Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: An advanced carbon nanostructure for superior lithium and sodium storage, Small, 14(2018), No. 39, art. No. 1802221. doi: 10.1002/smll.201802221
|
[17] |
M. O’Keeffe and O.M. Yaghi, Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets, Chem. Rev., 112(2012), No. 2, p. 675. doi: 10.1021/cr200205j
|
[18] |
Z.Q. Ye, Y. Jiang, L. Li, F. Wu, and R.J. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries, Nano Micro Lett., 13(2021), No. 1, art. No. 203. doi: 10.1007/s40820-021-00726-z
|
[19] |
J.W. Zhou and B. Wang, Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage, Chem. Soc. Rev., 46(2017), No. 22, p. 6927. doi: 10.1039/C7CS00283A
|
[20] |
S.Y. Zhang, Y.C. Xue, Y.T. Zhang, et al., KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 601. doi: 10.1007/s12613-022-2539-8
|
[21] |
J.N. Zhou, Q.Y. Yang, Q.Y. Xie, et al., Recent progress in Co-based metal-organic framework derivatives for advanced batteries, J. Mater. Sci. Technol., 96(2022), p. 262. doi: 10.1016/j.jmst.2021.04.033
|
[22] |
M.X. Liu, F.L. Zhao, D.Z. Zhu, et al., Ultramicroporous carbon nanoparticles derived from metal-organic framework nanoparticles for high-performance supercapacitors, Mater. Chem. Phys., 211(2018), p. 234. doi: 10.1016/j.matchemphys.2018.02.030
|
[23] |
A.D. Tan, Y.F. Wang, Z.Y. Fu, P. Tsiakaras, and Z.X. Liang, Highly effective oxygen reduction reaction electrocatalysis: Nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal-organic frameworks, Appl. Catal. B, 218(2017), p. 260. doi: 10.1016/j.apcatb.2017.06.051
|
[24] |
Y.C. Xue, X.M. Guo, M.R. Wu, et al., Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries, Nano Res., 14(2021), No. 10, p. 3598. doi: 10.1007/s12274-021-3640-4
|
[25] |
H.B. Aiyappa, P. Pachfule, R. Banerjee, and S. Kurungot, Porous carbons from nonporous MOFs: Influence of ligand characteristics on intrinsic properties of end carbon, Cryst. Growth Des., 13(2013), No. 10, p. 4195. doi: 10.1021/cg401122u
|
[26] |
Y.X. Zhao, Y.W. Sun, J. Li, et al., Interpenetrated N-rich MOF derived vesicular N-doped carbon for high performance lithium-ion battery, Dalton Trans., 51(2022), No. 20, p. 7817. doi: 10.1039/D2DT00551D
|
[27] |
S. Yuan, Q.H. Lai, X. Duan, and Q. Wang, Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review, J. Energy Storage, 61(2023), art. No. 106716. doi: 10.1016/j.est.2023.106716
|
[28] |
Y.B. Ma, K. Wang, Y.N. Xu, et al., Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors, Carbon, 202(2023), p. 175. doi: 10.1016/j.carbon.2022.11.030
|
[29] |
Z.Y. Li, Y.X. Ye, Z.Z. Yao, et al., An antiferromagnetic metalloring pyrazolate (Pz) framework with [Cu12(μ2-OH)12(Pz)12] nodes for separation of C2H2/CH4 mixture, J. Mater. Chem. A, 6(2018), No. 40, p. 19681. doi: 10.1039/C8TA04498H
|
[30] |
J.X. Wang, Z.L. Yan, G.C. Yan, et al., Spiral graphene coupling hierarchically porous carbon advances dual-carbon lithium-ion capacitor, Energy Storage Mater., 38(2021), p. 528. doi: 10.1016/j.ensm.2021.03.030
|
[31] |
Y.Y. Zhu, M.M. Chen, Q. Li, C. Yuan, and C.Y. Wang, A porous biomass-derived anode for high-performance sodium-ion batteries, Carbon, 129(2018), p. 695. doi: 10.1016/j.carbon.2017.12.103
|
[32] |
Y. Chen, K.L. Zhang, N. Li, et al., Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 33. doi: 10.1007/s12613-022-2416-5
|
[33] |
L.Y. Zhao, X.Y. Zhao, L.T. Burke, J.C. Bennett, R.A. Dunlap, and M.N. Obrovac, Voronoi-tessellated graphite produced by low-temperature catalytic graphitization from renewable resources, ChemSusChem, 10(2017), No. 17, p. 3409. doi: 10.1002/cssc.201701211
|
[34] |
D.P. Qiu, C.H. Kang, M. Li, et al., Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium-ion storage, Carbon, 162(2020), p. 595. doi: 10.1016/j.carbon.2020.02.083
|
[35] |
S.W. Lee, N. Yabuuchi, B.M. Gallant, et al., High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol., 5(2010), No. 7, p. 531. doi: 10.1038/nnano.2010.116
|
[36] |
H.B. Ouyang, Y.Y. Ma, Q.Q. Gong, et al., Tailoring porous structure and graphitic degree of seaweed-derived carbons for high-rate performance lithium-ion batteries, J. Alloys Compd., 823(2020), art. No. 153862. doi: 10.1016/j.jallcom.2020.153862
|
[37] |
D.B. Kong, Y. Gao, Z.C. Xiao, X.H. Xu, X.L. Li, and L.J. Zhi, Rational design of carbon-rich materials for energy storage and conversion, Adv. Mater., 31(2019), No. 45, art. No. 1804973. doi: 10.1002/adma.201804973
|
[38] |
A. Gomez-Martin, J. Martinez-Fernandez, M. Ruttert, et al., Iron-catalyzed graphitic carbon materials from biomass resources as anodes for lithium-ion batteries, ChemSusChem, 11(2018), No. 16, p. 2776. doi: 10.1002/cssc.201800831
|
[39] |
D. Adekoya, H. Chen, H.Y. Hoh, et al., Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage, ACS Nano, 14(2020), No. 4, p. 5027. doi: 10.1021/acsnano.0c01395
|
[40] |
K. Tang, X.Q. Yu, J.P. Sun, H. Li, and X.J. Huang, Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS, Electrochim. Acta, 56(2011), No. 13, p. 4869. doi: 10.1016/j.electacta.2011.02.119
|
[41] |
J.M. Jiang, Z.W. Li, Z.T. Zhang, et al., Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors, Rare Met., 41(2022), No. 10, p. 3322. doi: 10.1007/s12598-022-02050-w
|
[42] |
X.Z. Sun, X. Zhang, W.J. Liu, et al., Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium-ion capacitor, Electrochim. Acta, 235(2017), p. 158. doi: 10.1016/j.electacta.2017.03.110
|
[43] |
J.T. Su, Y.J. Wu, C.L. Huang, et al., Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors, Chem. Eng. J., 396(2020), art. No. 125314. doi: 10.1016/j.cej.2020.125314
|
[44] |
G. Moreno-Fernández, M. Granados-Moreno, J.L. Gómez-Urbano, and D. Carriazo, Phosphorus-functionalized graphene for lithium-ion capacitors with improved power and cyclability, Batteries Supercaps, 4(2021), No. 3, p. 469. doi: 10.1002/batt.202000247
|
[45] |
Z.Q. Shi, J. Zhang, J. Wang, J.L. Shi, and C.Y. Wang, Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors, Electrochim. Acta, 153(2015), p. 476. doi: 10.1016/j.electacta.2014.12.018
|
[46] |
P. Yu, G.J. Cao, S. Yi, et al., Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors, Nanoscale, 10(2018), No. 13, p. 5906. doi: 10.1039/C8NR00380G
|
[47] |
X. Wang, Z.K. Wang, X. Zhang, et al., Nitrogen-doped defective graphene aerogel as anode for all graphene-based lithium-ion capacitor, ChemistrySelect, 2(2017), No. 27, p. 8436. doi: 10.1002/slct.201701501
|
[48] |
M.X. Zhang, X. Zhang, Z.X. Liu, H.F. Peng, and G.K. Wang, Ball milling-derived nanostructured Li3VO4 anode with enhanced surface-confined capacitive contribution for lithium-ion capacitors, Ionics, 26(2020), No. 8, p. 4129. doi: 10.1007/s11581-020-03537-1
|
[49] |
J.G. Ju, L.T. Zhang, H.S. Shi, Z.J. Li, W.M. Kang, and B.W. Cheng, Three-dimensional porous carbon nanofiber loading MoS2 nanoflake-flowerballs as a high-performance anode material for Li-ion capacitor, Appl. Surf. Sci., 484(2019), p. 392. doi: 10.1016/j.apsusc.2019.04.099
|