Han Dang, Runsheng Xu, Jianliang Zhang, Mingyong Wang, and Jinhua Li, Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production: Physicochemical characteristics and gasification kinetics analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 268-281. https://doi.org/10.1007/s12613-023-2728-0
Cite this article as:
Han Dang, Runsheng Xu, Jianliang Zhang, Mingyong Wang, and Jinhua Li, Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production: Physicochemical characteristics and gasification kinetics analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 268-281. https://doi.org/10.1007/s12613-023-2728-0
Research Article

Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production: Physicochemical characteristics and gasification kinetics analysis

+ Author Affiliations
  • Corresponding authors:

    Runsheng Xu    E-mail: xu_runsheng@163.com

    Jinhua Li    E-mail: 1304503396@qq.com

  • Received: 4 May 2023Revised: 25 July 2023Accepted: 16 August 2023Available online: 18 August 2023
  • The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel. The results showed that after upgrading, the volatile content of biochar ranged from 16.19% to 45.35%, and the alkali metal content, ash content, and specific surface area were significantly reduced. The optimal route for biochar production is hydrothermal carbonization–pyrolysis (P-HC), resulting in biochar with a higher calorific value, C=C structure, and increased graphitization degree. The apparent activation energy (E) of the sample ranges from 199.1 to 324.8 kJ/mol, with P-HC having an E of 277.8 kJ/mol, lower than that of raw biomass, primary biochar, and anthracite. This makes P-HC more suitable for blast furnace injection fuel. Additionally, the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits. P-HC offers the highest potential for carbon emission reduction, capable of reducing emissions by 96.04 kg/t when replacing 40wt% coal injection.
  • loading
  • [1]
    J.L. Zhang, H.Y. Fu, Y.X. Liu, et al., Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1133. doi: 10.1007/s12613-022-2501-9
    [2]
    J. Zhao, H.B. Zuo, J.S. Wang, et al., The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1512. doi: 10.1007/s12613-019-1872-z
    [3]
    J.L. Zhang, J. Guo, G.W. Wang, et al., Kinetics of petroleum coke/biomass blends during co-gasification, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1001. doi: 10.1007/s12613-016-1317-x
    [4]
    H.B. Zuo, W.W. Geng, J.L. Zhang, et al., Comparison of kinetic models for isothermal CO2 gasification of coal char–biomass char blended char, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 363. doi: 10.1007/s12613-015-1081-3
    [5]
    N. Karali, T.F. Xu, and J. Sathaye, Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector, Appl. Energy, 120(2014), p. 133. doi: 10.1016/j.apenergy.2014.01.055
    [6]
    M, Hasanuzzaman, N.A. Rahim, M. Hosenuzzaman, et al., Energy savings in the combustion based process heating in industrial sector, Renewable Sustainable Energy Rev., 16(2012), No. 7, p. 4527. doi: 10.1016/j.rser.2012.05.027
    [7]
    K. Yan, C.W. Liu, L.P. Liu, et al., Pyrolysis behaviour and combustion kinetics of waste printed circuit boards, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1722. doi: 10.1007/s12613-021-2299-x
    [8]
    S.N. Xiu and A. Shahbazi, Bio-oil production and upgrading research: A review, Renew. Sustainable Energy Rev., 16(2012), No. 7, p. 4406. doi: 10.1016/j.rser.2012.04.028
    [9]
    R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, and S. Mekhilef, A review on biomass as a fuel for boilers, Renewable Sustainable Energy Rev., 15(2011), No. 5, p. 2262. doi: 10.1016/j.rser.2011.02.015
    [10]
    Q. Gao, G. Zhang, H. Zheng, et al., Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 314. doi: 10.1007/s12613-022-2432-5
    [11]
    D. Zhang, H. Fan, B. Zhao, et al., Development of biomass power generation technology at home and abroad, Huadian Technol., 43(2021), No. 03, p. 70.
    [12]
    G. Wang, J. Zhang, J. Shao, et al., Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends, Energy Convers. Manage., 124(2016), p. 414. doi: 10.1016/j.enconman.2016.07.045
    [13]
    P. Wang, G.W. Wang, J.L. Zhang, J.Y. Lee, Y.J. Li, and C. Wang, Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char, Appl. Therm. Eng., 143(2018), p. 736. doi: 10.1016/j.applthermaleng.2018.08.009
    [14]
    Y.S. Sun, Y.X. Han, Y.F. Li, et al., Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 123. doi: 10.1007/s12613-017-1386-5
    [15]
    G.W. Wang, J.L. Zhang, J.Y. Lee, et al., Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace, Appl. Energy, 266(2020), art. No. 114818. doi: 10.1016/j.apenergy.2020.114818
    [16]
    J. Minaret and A. Dutta, Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel, Bioresour. Technol., 200(2016), p. 804. doi: 10.1016/j.biortech.2015.11.010
    [17]
    H. Fatehi and X.S. Bai, Structural evolution of biomass char and its effect on the gasification rate, Appl. Energy, 185(2017), p. 998. doi: 10.1016/j.apenergy.2015.12.093
    [18]
    Z.G. Liu, A. Quek, S. Kent Hoekman, et al., Production of solid biochar fuel from waste biomass by hydrothermal carbonization, Fuel, 103(2013), p. 943. doi: 10.1016/j.fuel.2012.07.069
    [19]
    T.L. Eberhardt, W.J. Catallo, and T.F. Shupe, Hydrothermal transformation of Chinese privet seed biomass to gas-phase and semi-volatile products, Bioresour. Technol., 101(2010), No. 11, p. 4198. doi: 10.1016/j.biortech.2010.01.064
    [20]
    M. Goto, R. Obuchi, T. Hirose, et al., Hydrothermal conversion of municipal organic waste into resources, Bioresour. Technol., 93(2004), No. 3, p. 279. doi: 10.1016/j.biortech.2003.11.017
    [21]
    M.I.G. Miranda, C.I.D. Bica, S.M.B. Nachtigall, et al., Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC–TGA and MDSC techniques, Thermochim. Acta, 565(2013), p. 65. doi: 10.1016/j.tca.2013.04.012
    [22]
    W. Liang, G.W. Wang, K.X. Jiao, et al., Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization, Renew. Energy, 173(2021), p. 318. doi: 10.1016/j.renene.2021.03.123
    [23]
    H. Guo, Y. Cheng, L. Wang, et al., Experimental study on the effect of moisture on low-rank coal adsorption characteristics, J. Nat. Gas Sci. Eng., 24(2015), p. 245. doi: 10.1016/j.jngse.2015.03.037
    [24]
    J. Yu, A. Tahmasebi, Y. Han, et al., A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization, Fuel Process. Technol., 106(2013), p. 9. doi: 10.1016/j.fuproc.2012.09.051
    [25]
    S. Dey, Enhancement in hydrophobicity of low rank coal by surfactants—A critical overview, Fuel Process. Technol., 94(2012), No. 1, p. 151. doi: 10.1016/j.fuproc.2011.10.021
    [26]
    H.B. Jiang, J.L. Zhang, J.X. Fu, et al., Properties and structural optimization of pulverized coal for blast furnace injection, J. Iron Steel Res. Int., 18(2011), No. 3, p. 6. doi: 10.1016/S1006-706X(11)60029-0
    [27]
    A. Murao, Y. Kashihara, K. Takahashi, et al., Effect of natural gas injection into blast furnace on combustion efficiency of pulverized coal, Tetsu-to-Hagane, 101(2015), No. 12, p. 653. doi: 10.2355/tetsutohagane.TETSU-2015-052
    [28]
    Z.F. Peng, X.J. Ning, G.W. Wang, et al., Structural characteristics and flammability of low-order coal pyrolysis semi-coke, J. Energy Inst., 93(2020), No. 4, p. 1341. doi: 10.1016/j.joei.2019.12.004
    [29]
    H. Dang, G.W. Wang, C.M. Yu, et al., Study on chemical bond dissociation and the removal of oxygen-containing functional groups of low-rank coal during hydrothermal carbonization: DFT calculations, ACS Omega, 6(2021), No. 39, p. 25772. doi: 10.1021/acsomega.1c03866
    [30]
    N. Zhang, G.W. Wang, C.M. Yu, et al., Physicochemical structure characteristics and combustion kinetics of low-rank coal by hydrothermal carbonization, Energy, 238(2022), art. No. 121682. doi: 10.1016/j.energy.2021.121682
    [31]
    S.W. Du, W.H. Chen, and J. Lucas, Performances of pulverized coal injection in blowpipe and tuyere at various operational conditions, Energy Convers. Manage., 48(2007), No. 7, p. 2069. doi: 10.1016/j.enconman.2007.01.013
    [32]
    H.K. Li, Y.J. Wang, Jiao K., et al., Study on alkali circulation process and its influence on coke ratio in blast furnace, [in] 10th International Symposium on High-Temperature Metallurgical Processing, San Antonio, 2019
    [33]
    C. Rodríguez Correa, M. Stollovsky, T. Hehr, et al., Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses, ACS Sustainable Chem. Eng., 5(2017), No. 9, p. 8222. doi: 10.1021/acssuschemeng.7b01895
    [34]
    H. Dang, R.S. Xu, J.L. Zhang, et al., Hydrothermal carbonization of waste furniture for clean blast furnace fuel production: Physicochemical, gasification characteristics and conversion mechanism investigation, Chem. Eng. J., 469(2023), art. No. 143980. doi: 10.1016/j.cej.2023.143980
    [35]
    R.P. Li, J.L. Zhang, G.W. Wang, et al., Study on CO2 gasification reactivity of biomass char derived from high-temperature rapid pyrolysis, Appl. Therm. Eng., 121(2017), p. 1022. doi: 10.1016/j.applthermaleng.2017.04.132
    [36]
    O. Beyssac, B. Goffé, J.P. Petitet, et al., On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 59(2003), No. 10, p. 2267. doi: 10.1016/S1386-1425(03)00070-2
    [37]
    Q. He, L. Ding, A. Raheem, et al., Kinetics comparison and insight into structure-performance correlation for leached biochar gasification, Chem. Eng. J., 417(2021), art. No. 129331. doi: 10.1016/j.cej.2021.129331
    [38]
    N. Zhang, G.W. Wang, J.L. Zhang, et al., Study on co-combustion characteristics of hydrochar and anthracite coal, J. Energy Inst., 93(2020), No. 3, p. 1125. doi: 10.1016/j.joei.2019.10.006
    [39]
    A. Mosqueda, J.T. Wei, K. Medrano, et al., Co-gasification reactivity and synergy of banana residue hydrochar and anthracite coal blends, Appl. Energy, 250(2019), p. 92. doi: 10.1016/j.apenergy.2019.05.008
    [40]
    R.V.P. Antero, A.C.F. Alves, S.B. de Oliveira, et al., Challenges and alternatives for the adequacy of hydrothermal carbonization of lignocellulosic biomass in cleaner production systems: A review, J. Cleaner Prod., 252(2020), art. No. 119899. doi: 10.1016/j.jclepro.2019.119899
    [41]
    H.Y. Gong, Y.D. Huang, H.Y. Hu, et al., The potential oxidation characteristics of CaCr2O4 during coal combustion with solid waste in a fluidized bed boiler: A thermogravimetric analysis, Chemosphere, 263(2021), art. No. 127974. doi: 10.1016/j.chemosphere.2020.127974
    [42]
    Q. Hu, H.P. Yang, H.S. Xu, et al., Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in situ gasification of torrefied biomass pellets, Energy Convers. Manage., 161(2018), p. 205. doi: 10.1016/j.enconman.2018.02.003
    [43]
    S. Nomura and T.G. Callcott, Maximum rates of pulverized coal injection in ironmaking blast furnaces, ISIJ Int., 51(2011), No. 7, p. 1033. doi: 10.2355/isijinternational.51.1033
    [44]
    C.L. Zhang, G.W. Wang, X.J. Ning, et al., Numerical simulation of combustion behaviors of hydrochar derived from low-rank coal in the raceway of blast furnace, Fuel, 278(2020), art. No. 118267. doi: 10.1016/j.fuel.2020.118267
    [45]
    Y.H. Zhou, P. Zhou, J.Y. Dan, et al., Effects of single lance configuration on coal combustion process in tuyere from viewpoint of coal plume, J. Iron Steel Res. Int., 28(2021), No. 7, p. 785. doi: 10.1007/s42243-020-00556-0
    [46]
    R.K. Agrawal, On the compensation effect, J. Therm. Anal., 31(1986), No. 1, p. 73. doi: 10.1007/BF01913888
    [47]
    P.J. Barrie, The mathematical origins of the kinetic compensation effect: 2. the effect of systematic errors, Phys. Chem. Chem. Phys., 14(2012), No. 1, p. 327. doi: 10.1039/C1CP22667C
    [48]
    K. Yip, E. Ng, C.Z. Li, et al., A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars, Proc. Combust. Inst., 33(2011), No. 2, p. 1755. doi: 10.1016/j.proci.2010.07.073
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Share Article

    Article Metrics

    Article Views(711) PDF Downloads(58) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return