Cite this article as: |
Xu Zhao, Naitao Gao, Shengcheng Wu, Shaozhen Li, and Sujuan Wu, Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 786-794. https://doi.org/10.1007/s12613-023-2742-2 |
Shaozhen Li E-mail: sujwu@scnu.edu.cn
Sujuan Wu E-mail: origen2003@whpu.edu.cn
Supplementary Information-s12613-023-2742-2.docx |
[1] |
L. Chu, S.B. Zhai, W. Ahmad, et al., High-performance large-area perovskite photovoltaic modules, Nano Res. Energy, 1(2022), No. 2, art. No. 9120024. doi: 10.26599/NRE.2022.9120024
|
[2] |
Z.T. Wang, Q.W. Tian, H. Zhang, et al., Managing multiple halide-related defects for efficient and stable inorganic perovskite solar cells, Angew. Chem. Int. Ed., 62(2023), No. 30, art. No. e202305815. doi: 10.1002/anie.202305815
|
[3] |
S.Y. Zhang, J. He, X. Guo, et al., Crystallization dynamic control of perovskite films with suppressed phase transition and reduced defects for highly efficient and stable all-inorganic perovskite solar cells, ACS Mater. Lett., 5(2023), No. 6, p. 1497. doi: 10.1021/acsmaterialslett.3c00275
|
[4] |
G.E. Eperon, G.M. Paternò, R.J. Sutton, et al., Inorganic caesium lead iodide perovskite solar cells, J. Mater. Chem. A, 3(2015), No. 39, p. 19688. doi: 10.1039/C5TA06398A
|
[5] |
J.X. Zhang, G.Z. Zhang, P.Y. Su, et al., 1D choline-PbI3-based heterostructure boosts efficiency and stability of CsPbI3 perovskite solar cells, Angew. Chem. Int. Ed., 62(2023), No. 25, art. No. e202303486. doi: 10.1002/anie.202303486
|
[6] |
Q.S. Zeng, X.Y. Zhang, C.M. Liu, et al., Inorganic CsPbI2Br perovskite solar cells: The progress and perspective, Sol. RRL, 3(2019), No. 1, art. No. 1800239. doi: 10.1002/solr.201800239
|
[7] |
H.P. Dong, Y. Li, S.F. Wang, et al., Interface engineering of perovskite solar cells with PEO for improved performance, J. Mater. Chem. A, 3(2015), No. 18, p. 9999. doi: 10.1039/C5TA00407A
|
[8] |
L. Yan, Q.F. Xue, M.Y. Liu, et al., Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%, Adv. Mater., 30(2018), No. 33, art. No. 1802509. doi: 10.1002/adma.201802509
|
[9] |
S.M. Yang, H. Zhao, Y. Han, C.Y. Duan, Z.K. Liu, and S.F. Liu, Europium and acetate co-doping strategy for developing stable and efficient CsPbI2Br perovskite solar cells, Small, 15(2019), No. 46, art. No. 1904387. doi: 10.1002/smll.201904387
|
[10] |
E.C. Shen, J.D. Chen, Y. Tian, et al., Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells, Adv. Sci., 7(2020), No. 1, art. No. 1901952. doi: 10.1002/advs.201901952
|
[11] |
Q.Y. Guo, J.L. Duan, J.S. Zhang, et al., Universal dynamic liquid interface for healing perovskite solar cells, Adv. Mater., 34(2022), No. 26, art. No. 2202301. doi: 10.1002/adma.202202301
|
[12] |
H.P. Zhou, Q. Chen, G. Li, et al., Interface engineering of highly efficient perovskite solar cells, Science, 345(2014), No. 6196, p. 542. doi: 10.1126/science.1254050
|
[13] |
J.J. He, B. Ge, Y. Hou, S. Yang, and H.G. Yang, A dendrite-structured RbX (X=Br, I) interlayer for CsPbI2Br perovskite solar cells with over 15 % stabilized efficiency, ChemSusChem, 13(2020), No. 20, p. 5443. doi: 10.1002/cssc.202001629
|
[14] |
A.R. Zhao, Y. Han, Y.H. Che, et al., High-quality borophene quantum dot realization and their application in a photovoltaic device, J. Mater. Chem. A, 9(2021), No. 42, p. 24036. doi: 10.1039/D1TA06524F
|
[15] |
W.R. Wang, Y. Lin, G.Z. Zhang, et al., Modification of compact TiO2 layer by TiCl4–TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbI2Br perovskite solar cells, J. Energy Chem., 63(2021), p. 442. doi: 10.1016/j.jechem.2021.07.014
|
[16] |
C.H. Duan, Q.Y. Wen, Y. Fan, J. Li, Z.D. Liu, and K.Y. Yan, Improving the stability and scalability of all-inorganic inverted CsPbI2Br perovskite solar cell, J. Energy Chem., 68(2022), p. 176. doi: 10.1016/j.jechem.2021.11.026
|
[17] |
Y. Jing, X. Liu, Y. Xu, et al., Amorphous antimony sulfide nanoparticles construct multi-contact electron transport layers for efficient carbon-based all-inorganic CsPbI2Br perovskite solar cells, Chem. Eng. J., 455(2023), art. No. 140871. doi: 10.1016/j.cej.2022.140871
|
[18] |
S. You, H. Wang, S.Q. Bi, et al., A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells, Adv. Mater., 30(2018), No. 22, art. No. 1706924. doi: 10.1002/adma.201706924
|
[19] |
J. Tan, J. Dou, J.L. Duan, Y.Y. Zhao, B.L. He, and Q.W. Tang, A trifunctional polyethylene oxide buffer layer for stable and efficient all-inorganic CsPbBr3 perovskite solar cells, Dalton Trans., 52(2023), No. 13, p. 4038. doi: 10.1039/D3DT00169E
|
[20] |
K. Tian, Y. Lu, R. Liu, X.J. Loh, and D.J. Young, Low-threshold amplified spontaneous emission from air-stable CsPbBr3 perovskite films containing trace amounts of polyethylene oxide, ChemPlusChem, 86(2021), No. 11, p. 1537. doi: 10.1002/cplu.202100377
|
[21] |
Z. Uddin, J.H. Ran, E. Stathatos, and B. Yang, Improving thermal stability of perovskite solar cells by thermoplastic additive engineering, Energies, 16(2023), No. 9, art. No. 3621. doi: 10.3390/en16093621
|
[22] |
J.J. Yang, X. Yu, X.B. Lu, et al., Bifunctional passivation for efficient and stable low-temperature processed all-inorganic CsPbIBr2 perovskite solar cells, Surf. Interfaces, 32(2022), art. No. 102097. doi: 10.1016/j.surfin.2022.102097
|
[23] |
P.L. Qin, T. Wu, Z.C. Wang, et al., Vitrification transformation of poly(ethylene oxide) activating interface passivation for high-efficiency perovskite solar cells, Sol. RRL, 3(2019), No. 10, art. No. 1900134. doi: 10.1002/solr.201900134
|
[24] |
N. Arora, M.I. Dar, A. Hinderhofer, et al., Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science, 358(2017), No. 6364, p. 768. doi: 10.1126/science.aam5655
|
[25] |
Q. Chen, H.P. Zhou, Z.R. Hong, et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc., 136(2014), No. 2, p. 622. doi: 10.1021/ja411509g
|
[26] |
B.A. Nejand, V. Ahmadi, S. Gharibzadeh, and H.R. Shahverdi, Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells, ChemSusChem, 9(2016), No. 3, p. 302. doi: 10.1002/cssc.201501273
|
[27] |
A. Aftab and M.I. Ahmad, A review of stability and progress in tin halide perovskite solar cell, Sol. Energy, 216(2021), p. 26. doi: 10.1016/j.solener.2020.12.065
|
[28] |
H.J. Snaith, A. Abate, J.M. Ball, et al., Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett., 5(2014), No. 9, p. 1511. doi: 10.1021/jz500113x
|
[29] |
J.Y. Li, B.Y. Huang, E.N. Esfahani, et al., Touching is believing: Interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy, NPJ Quantum Mater., 2(2017), art. No. 56. doi: 10.1038/s41535-017-0061-4
|
[30] |
B.P. Nguyen, G.Y. Kim, W. Jo, B.J. Kim, and H.S. Jung, Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1− x Br x )3 perovskite solar cells, Nanotechnology, 28(2017), No. 31, art. No. 315402. doi: 10.1088/1361-6528/aa727e
|
[31] |
J.H. Heo, M.S. You, M.H. Chang, et al., Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode, Nano Energy, 15(2015), p. 530. doi: 10.1016/j.nanoen.2015.05.014
|
[32] |
K.M. Boopathi, R. Mohan, T.Y. Huang, et al., Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives, J. Mater. Chem. A, 4(2016), No. 5, p. 1591. doi: 10.1039/C5TA10288J
|
[33] |
Y.F. Liu, Z.L. Wu, Y.X. Dou, et al., Formamidinium-based perovskite solar cells with enhanced moisture stability and performance via confined pressure annealing, J. Phys. Chem. C, 124(2020), No. 23, p. 12249. doi: 10.1021/acs.jpcc.0c02289
|
[34] |
Y. Dong, W.J. Shen, W. Dong, et al., Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells, Adv. Energy Mater., 12(2022), No. 20, art. No. 2200417. doi: 10.1002/aenm.202200417
|
[35] |
Y.X. Gao, Y.N. Dong, K.Q. Huang, et al., Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing, ACS Photonics, 5(2018), No. 10, p. 4104. doi: 10.1021/acsphotonics.8b00783
|
[36] |
J.R. Zhang, D.L. Bai, Z.W. Jin, et al., 3D–2D–0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability, Adv. Energy Mater., 8(2018), No. 15, art. No. 1703246. doi: 10.1002/aenm.201703246
|
[37] |
Y. Xu, F.L. Liu, R.S. Li, et al., Mxene regulates the stress of perovskite and improves interface contact for high-efficiency carbon-based all-inorganic solar cells, Chem. Eng. J., 461(2023), art. No. 141895. doi: 10.1016/j.cej.2023.141895
|
[38] |
Y.W. Duan, K. He, L. Yang, J. Xu, W.J. Zhao, and Z.K. Liu, 24.20%-efficiency MA-free perovskite solar cells enabled by siloxane derivative interface engineering, Small, 18(2022), No. 48, art. No. 2204733. doi: 10.1002/smll.202204733
|
[39] |
Y.X. Zhao, A.M. Nardes, and K. Zhu, Mesoporous perovskite solar cells: Material composition, charge-carrier dynamics, and device characteristics, Faraday Discuss., 176(2014), p. 301. doi: 10.1039/C4FD00128A
|
[40] |
M. Park, J.Y. Kim, H.J. Son, C.H. Lee, S.S. Jang, and M.J. Ko, Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells, Nano Energy, 26(2016), p. 208. doi: 10.1016/j.nanoen.2016.04.060
|
[41] |
Z.H. Yu, B.L. Chen, P. Liu, et al., Stable organic–inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering, Adv. Funct. Mater., 26(2016), No. 27, p. 4866. doi: 10.1002/adfm.201504564
|
[42] |
L.Y. Lin, M.H. Yeh, C.P. Lee, C.Y. Chou, R. Vittal, and K.C. Ho, Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles, Electrochim. Acta, 62(2012), p. 341. doi: 10.1016/j.electacta.2011.12.036
|
[43] |
S. Yang, W.B. Yue, J. Zhu, Y. Ren, and X.J. Yang, Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries, Adv. Funct. Mater., 23(2013), No. 28, p. 3570. doi: 10.1002/adfm.201203286
|
[44] |
M.A. Mahmud, N.K. Elumalai, M.B. Upama, et al., Single vs mixed organic cation for low temperature processed perovskite solar cells, Electrochim. Acta, 222(2016), p. 1510. doi: 10.1016/j.electacta.2016.11.132
|
[45] |
X.M. Li, P.C. Jia, F.W. Meng, et al., Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1965. doi: 10.1007/s12613-023-2604-y
|
[46] |
H.R. Sun, J. Zhang, X.L. Gan, et al., Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells, Adv. Energy Mater., 9(2019), No. 25, art. No. 1900896. doi: 10.1002/aenm.201900896
|
[47] |
W. Chen, Y.H. Wu, J. Fan, et al., Understanding the doping effect on NiO: Toward high-performance inverted perovskite solar cells, Adv. Energy Mater., 8(2018), 19, art. No. 1703519. doi: 10.1002/aenm.201703519
|
[48] |
J.J. Tian, Q.F. Xue, X.F. Tang, et al., Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability, Adv. Mater., 31(2019), No. 23, art. No. 1901152. doi: 10.1002/adma.201901152
|
[49] |
R. Azmi, S.H. Oh, and S.Y. Jang, High-efficiency colloidal quantum dot photovoltaic devices using chemically modified heterojunctions, ACS Energy Lett., 1(2016), No. 1, p. 100. doi: 10.1021/acsenergylett.6b00070
|
[50] |
Y. Zhou, X. Zhang, X.B. Lu, et al., Promoting the hole extraction with Co3O4 nanomaterials for efficient carbon-based CsPbI2Br perovskite solar cells, Sol. RRL, 3(2019), No. 4, art. No. 1800315. doi: 10.1002/solr.201800315
|
[51] |
J.L. Duan, Y.Y. Zhao, B.L. He, and Q.W. Tang, High-purity inorganic perovskite films for solar cells with 9.72 % efficiency, Angew. Chem. Int. Ed., 57(2018), No. 14, p. 3787. doi: 10.1002/anie.201800019
|
[52] |
M. Zhang, W. Gao, F.J. Zhang, et al., Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%, Energy Environ. Sci., 11(2018), No. 4, p. 841. doi: 10.1039/C8EE00215K
|