Cite this article as: |
Sara Marijan and Luka Pavić, Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na2O–V2O5–Nb2O5–P2O5 glass system, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 186-196. https://doi.org/10.1007/s12613-023-2744-0 |
Luka Pavić E-mail: lpavic@irb.hr
[1] |
Q.B. Yuan, M. Chen, S.L. Zhan, Y.X. Li, Y. Lin, and H.B. Yang, Ceramic-based dielectrics for electrostatic energy storage applications: Fundamental aspects, recent progress, and remaining challenges, Chem. Eng. J., 446(2022), art. No. 136315. doi: 10.1016/j.cej.2022.136315
|
[2] |
Z.H. Yao, Z. Song, H. Hao, et al., Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances, Adv. Mater., 29(2017), No. 20, art. No. 1601727. doi: 10.1002/adma.201601727
|
[3] |
A. Smirnova, A. Numan-Al-Mobin, and Inamuddin, Green Sustainable Process for Chemical and Environmental Engineering and Science: Solid-State Energy Storage - A Path to Environmental Sustainability, Elsevier, Amsterdam, 2023.
|
[4] |
S. Gandi, V.S.C.S. Vaddadi, S.S.S. Panda, et al., Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review, J. Power Sources, 521(2022), art. No. 230930. doi: 10.1016/j.jpowsour.2021.230930
|
[5] |
C. Chen, Y.X. Zheng, and B. Li, Achieving ultrafast discharge speed and excellent energy storage efficiency in environmentally friendly niobate-based glass ceramics, J. Eur. Ceram. Soc., 42(2022), No. 15, p. 6977. doi: 10.1016/j.jeurceramsoc.2022.08.010
|
[6] |
T.T. Fu, S.F. Xie, C.S. Liu, H.R. Bai, B. Shen, and J.W. Zhai, High discharge energy density and ultralow dielectric loss in alkali-free niobate-based glass-ceramics by composition optimization, Scripta Mater., 221(2022), art. No. 114993. doi: 10.1016/j.scriptamat.2022.114993
|
[7] |
F. Luo, Y.Y. Qin, F. Shang, and G.H. Chen, Crystallization temperature dependence of structure, electrical and energy storage properties in BaO–Na2O–Nb2O5–Al2O3–B2O3 glass ceramics, Ceram. Int., 48(2022), No. 20, p. 30661. doi: 10.1016/j.ceramint.2022.07.011
|
[8] |
C.S. Liu, S.F. Xie, K.K. Chen, B.J. Song, B. Shen, and J.W. Zhai, High breakdown strength and enhanced energy storage performance of niobate-based glass-ceramics via glass phase structure optimization, Ceram. Int., 47(2021), No. 22, p. 31229. doi: 10.1016/j.ceramint.2021.07.299
|
[9] |
T. Komatsu, T. Honma, T. Tasheva, and V. Dimitrov, Structural role of Nb2O5 in glass-forming ability, electronic polarizability and nanocrystallization in glasses: A review, J. Non-Cryst. Solids, 581(2022), art. No. 121414. doi: 10.1016/j.jnoncrysol.2022.121414
|
[10] |
S.J. Wang, J. Tian, K. Yang, J.R. Liu, J.W. Zhai, and B. Shen, Crystallization kinetics behavior and dielectric energy storage properties of strontium potassium niobate glass-ceramics with different nucleating agents, Ceram. Int., 44(2018), No. 7, p. 8528. doi: 10.1016/j.ceramint.2018.02.054
|
[11] |
M.P.F. Graça, M.G.F. da Silva, A.S.B. Sombra, and M.A. Valente, Electric and dielectric properties of a SiO2–Na2O–Nb2O5 glass subject to a controlled heat-treatment process, Physica B, 396(2007), No. 1-2, p. 62. doi: 10.1016/j.physb.2007.03.009
|
[12] |
X. Peng, Y.P. Pu, Z.X. Sun, et al., Achieving high electrical homogeneity in (Na2O, K2O)–Nb2O5–SiO2–MO (M = Ca2+, Sr2+, Ba2+) glass-ceramics for energy storage by composition design, Composites Part B, 260(2023), art. No. 110765. doi: 10.1016/j.compositesb.2023.110765
|
[13] |
X.Y. Liu, K. Zhao, and H. Jiao, Stabilizing the anti-ferroelectric phase in NaO–Nb2O5–CaO–B2O3–SiO2–ZrO2 glass-ceramics using the modification of K+ ion, Ceram. Int., 49(2023), No. 12, p. 21078. doi: 10.1016/j.ceramint.2023.03.243
|
[14] |
M.P.F. Graça, M.G.F. da Silva, and M.A. Valente, NaNbO3 crystals dispersed in a B2O3 glass matrix –Structural characteristics versus electrical and dielectrical properties, Solid State Sci., 11(2009), No. 2, p. 570. doi: 10.1016/j.solidstatesciences.2008.07.010
|
[15] |
S. Benyounoussy, L. Bih, F. Muñoz, F. Rubio-Marcos, M. Naji, and A. El Bouari, Structure, dielectric, and energy storage behaviors of the lossy glass-ceramics obtained from Na2O–Nb2O5–P2O5 glassy-system, Phase Transitions, 94(2021), No. 9, p. 634. doi: 10.1080/01411594.2021.1949458
|
[16] |
S. Benyounoussy, L. Bih, F. Muñoz, F. Rubio-Marcos, and A. El Bouari, Effect of the Na2O–Nb2O5–P2O5 glass additive on the structure, dielectric and energy storage performances of sodium niobate ceramics, Heliyon, 7(2021), No. 5, art. No. e07113. doi: 10.1016/j.heliyon.2021.e07113
|
[17] |
A. Ihyadn, A. Lahmar, D. Mezzane, et al., Structural, electrical and energy storage properties of BaO–Na2O–Nb2O5–WO3–P2O5 glass-ceramics system, Mater. Res. Express, 6(2019), No. 11, art. No. 115203. doi: 10.1088/2053-1591/ab4569
|
[18] |
A. Ihyadn, S. Merselmiz, D. Mezzane, et al., Dielectric and energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.90O3 ceramics with BaO–Na2O–Nb2O5–WO3–P2O5 glass addition, J. Mater. Sci. Mater. Electron., 34(2023), No. 12, art. No. 1051. doi: 10.1007/s10854-023-10483-x
|
[19] |
M. Maraj, W.W. Wei, B.L. Peng, and W.H. Sun, Dielectric and energy storage properties of Ba(1−x)CaxZryTi(1−y)O3 (BCZT): A review, Materials, 12(2019), No. 21, art. No. 3641. doi: 10.3390/ma12213641
|
[20] |
L. Zhang, Y.P. Pu, and M. Chen, Complex impedance spectroscopy for capacitive energy-storage ceramics: A review and prospects, Mater. Today Chem., 28(2023), art. No. 101353. doi: 10.1016/j.mtchem.2022.101353
|
[21] |
S. Sanghi, A. Sheoran, A. Agarwal, and S. Khasa, Conductivity and dielectric relaxation in niobium alkali borate glasses, Physica B, 405(2010), No. 24, p. 4919. doi: 10.1016/j.physb.2010.09.032
|
[22] |
M.P.F. Graça, B.M.G. Melo, P.R. Prezas, M.A. Valente, F.N.A. Freire, and L. Bih, Electrical and dielectric analysis of phosphate based glasses doped with alkali oxides, Mater. Des., 86(2015), p. 427. doi: 10.1016/j.matdes.2015.07.043
|
[23] |
Y. Attafi and S.Q. Liu, Conductivity and dielectric properties of Na2O–K2O–Nb2O5–P2O5 glasses with varying amounts of Nb2O5, J. Non-Cryst. Solids, 447(2016), p. 74. doi: 10.1016/j.jnoncrysol.2016.05.038
|
[24] |
K.S. Gerace, M.T. Lanagan, and J.C. Mauro, Dielectric polarizability of SiO2 in niobiosilicate glasses, J. Am. Ceram. Soc., 106(2023), No. 8, p. 4546. doi: 10.1111/jace.19151
|
[25] |
S. Marijan, M. Razum, T. Klaser, et al., Tailoring structure for improved sodium mobility and electrical properties in V2O5–Nb2O5–P2O5 glass(es)-(ceramics), J. Phys. Chem. Solids, 181(2023), art. No. 111461. doi: 10.1016/j.jpcs.2023.111461
|
[26] |
A. Moguš-Milanković, K. Sklepić, H. Blažanović, P. Mošner, M. Vorokhta, and L. Koudelka, Influence of germanium oxide addition on the electrical properties of Li2O–B2O3–P2O5 glasses, J. Power Sources, 242(2013), p. 91. doi: 10.1016/j.jpowsour.2013.05.068
|
[27] |
V. Prasad, L. Pavić, A. Moguš-Milanković, et al., Influence of silver ion concentration on dielectric characteristics of Li2O–Nb2O5–P2O5 glasses, J. Alloys Compd., 773(2019), p. 654. doi: 10.1016/j.jallcom.2018.09.161
|
[28] |
L. Pavić, Ž. Skoko, A. Gajović, D.S. Su, and A. Moguš-Milanković, Electrical transport in iron phosphate glass-ceramics, J. Non-Cryst. Solids, 502(2018), p. 44. doi: 10.1016/j.jnoncrysol.2018.02.012
|
[29] |
L. Pavić, K. Sklepić, Ž. Skoko, et al., Ionic conductivity of lithium germanium phosphate glass-ceramics, J. Phys. Chem. C, 123(2019), No. 38, p. 23312. doi: 10.1021/acs.jpcc.9b03666
|
[30] |
L. Pavić, J. Nikolić, M.P.F. Graça, et al., Effect of controlled crystallization on polaronic transport in phosphate-based glass-ceramics, Int. J. Appl. Glass Sci., 11(2020), No. 1, p. 97. doi: 10.1111/ijag.13618
|
[31] |
A. Bafti, S. Kubuki, H. Ertap, et al., Electrical transport in iron phosphate-based glass-(ceramics): Insights into the role of B2O3 and HfO2 from model-free scaling procedures, Nanomaterials, 12(2022), No. 4, art. No. 639. doi: 10.3390/nano12040639
|
[32] |
F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy, Springer Berlin, Heidelberg, 2003.
|
[33] |
D.L. Sidebottom, Universal approach for scaling the ac conductivity in ionic glasses, Phys. Rev. Lett., 82(1999), No. 18, p. 3653. doi: 10.1103/PhysRevLett.82.3653
|
[34] |
D.L. Sidebottom, B. Roling, and K. Funke, Ionic conduction in solids: Comparing conductivity and modulus representations with regard to scaling properties, Phys. Rev. B, 63(2000), No. 2, art. No. 024301. doi: 10.1103/PhysRevB.63.024301
|
[35] |
N.K. Mohan, M.R. Reddy, C.K. Jayasankar, and N. Veeraiah, Spectroscopic and dielectric studies on MnO doped PbO–Nb2O5–P2O5 glass system, J. Alloys Compd., 458(2008), No. 1-2, p. 66. doi: 10.1016/j.jallcom.2007.04.143
|
[36] |
B. Roling, Scaling properties of the conductivity spectra of glasses and supercooled melts, Solid State Ionics, 105(1998), No. 1-4, p. 185. doi: 10.1016/S0167-2738(97)00463-3
|
[37] |
M. Bakry and L. Klinkenbusch, Using the Kramers-Kronig transforms to retrieve the conductivity from the effective complex permittivity, Adv. Radio Sci., 16(2018), p. 23. doi: 10.5194/ars-16-23-2018
|
[38] |
P.B. Macedo, C.T. Moynihan, and R. Bose, Role of ionic diffusion in polarization in vitreous ionic conductors, Phys. Chem. Glasses, 13(1972), No. 6, p. 171.
|
[39] |
D.C. Sinclair, Characterization of electro-materials using ac impedance spectroscopy, Bol. Soc. Esp. Ceram. Vidrio, 34(1995), No. 2, p. 55.
|