Cite this article as: |
Qinghe Cui, Xuefeng Liu, Wenjing Wang, Shaojie Tian, Vasili Rubanik, Vasili Rubanik Jr., and Dzmitry Bahrets, Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1322-1332. https://doi.org/10.1007/s12613-023-2745-z |
Xuefeng Liu E-mail: liuxuefengbj@163.com
[1] |
S.Y. Lin, Analysis on the resonance frequency of sandwich ultrasonic transducers with two sets of piezoelectric ceramic elements, Acta Electron. Sin., 37(2009), No. 11, p. 2504.
|
[2] |
X.M. Cheng, K. Yang, J. Wang, W.T. Xiao, and S.S. Huang, Ultrasonic system and ultrasonic metal welding performance: A status review, J. Manuf. Process., 84(2022), p. 1196. doi: 10.1016/j.jmapro.2022.10.067
|
[3] |
H.Y. Zhou, H.Z. Cui, and Q.H. Qin, Influence of ultrasonic vibration on the plasticity of metals during compression process, J. Mater. Process. Technol., 251(2018), p. 146. doi: 10.1016/j.jmatprotec.2017.08.021
|
[4] |
C. Bunget and G. Ngaile, Influence of ultrasonic vibration on micro-extrusion, Ultrasonics, 51(2011), No. 5, p. 606. doi: 10.1016/j.ultras.2011.01.001
|
[5] |
Z.B. Chen, L.F. Yang, K.Y. Zhang, J.Y. Jiang, and P.J. Zong, Research status of ultrasonic vibration assisted plastic forming process, IOP Conf. Ser.: Mater. Sci. Eng., 758(2020), No. 1, art. No. 012036. doi: 10.1088/1757-899X/758/1/012036
|
[6] |
D. Kremer, S.M. Saleh, S.R. Ghabrial, and A. Moisan, The state of the art of ultrasonic machining, CIRP Ann., 30(1981), No. 1, p. 107. doi: 10.1016/S0007-8506(07)60905-6
|
[7] |
R. Singh and J.S. Khamba, Ultrasonic machining of titanium and its alloys: A review, J. Mater. Process. Technol., 173(2006), No. 2, p. 125. doi: 10.1016/j.jmatprotec.2005.10.027
|
[8] |
S. Kumar, Ultrasonic assisted friction stir processing of 6063 aluminum alloy, Arch. Civ. Mech. Eng., 16(2016), No. 3, p. 473. doi: 10.1016/j.acme.2016.03.002
|
[9] |
Y.L. Wei, Research of the Dislocation Structures of Deformed FCC Metals [Dissertation], Tsinghua University, Beijing, 2011, p. 59.
|
[10] |
A.A. Nazarova, R.R. Mulyukov, V.V. Rubanik, Y.V. Tsarenko, and A.A. Nazarov, Effect of ultrasonic treatment on the structure and properties of ultrafine-grained nickel, Phys. Met. Metallogr., 110(2010), No. 6, p. 574. doi: 10.1134/S0031918X10120082
|
[11] |
J. Hu, T. Shimizu, T. Yoshino, T. Shiratori, and M. Yang, Ultrasonic dynamic impact effect on deformation of aluminum during micro-compression tests, J. Mater. Process. Technol., 258(2018), p. 144. doi: 10.1016/j.jmatprotec.2018.03.021
|
[12] |
J.C. Hung and C.C. Lin, Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting, Mater. Des., 45(2013), p. 412. doi: 10.1016/j.matdes.2012.07.021
|
[13] |
S. Bagherzadeh, K. Abrinia, and Q.Y. Han, Analysis of plastic deformation behavior of ultrafine-grained aluminum processed by the newly developed ultrasonic vibration enhanced ECAP: Simulation and experiments, J. Manuf. Process., 50(2020), p. 485. doi: 10.1016/j.jmapro.2020.01.010
|
[14] |
G.D. Shao, H.W. Li, X. Zhang, M. Zhan, and Z.Y. Xiang, Characteristics and mechanism in ultrasonic vibration-assisted deformation of Ni-based superalloy thin-walled sheet by quasi-in-situ EBSD, SSRN Electron. J., 908(2022), art. No. 164591.
|
[15] |
J. Hu, T. Shimizu, T. Yoshino, T. Shiratori, and M. Yang, Evolution of acoustic softening effect on ultrasonic-assisted micro/meso-compression behavior and microstructure, Ultrasonics, 107(2020), art. No. 106107. doi: 10.1016/j.ultras.2020.106107
|
[16] |
A.E. Eaves, A.W. Smith, W.J. Waterhouse, and D.H. Sansome, Review of the application of ultrasonic vibrations to deforming metals, Ultrasonics, 13(1975), No. 4, p. 162. doi: 10.1016/0041-624X(75)90085-2
|
[17] |
D.R. Culp and H.T. Gencsoy, Metal deformation with ultrasound, [in] 1973 Ultrasonics Symposium, Monterey, 1973, p. 195.
|
[18] |
J. Hu, T. Shimizu, and M. Yang, Investigation on ultrasonic volume effects: Stress superposition, acoustic softening and dynamic impact, Ultrason. Sonochem., 48(2018), p. 240. doi: 10.1016/j.ultsonch.2018.05.039
|
[19] |
B. Langenecker, Effects of ultrasound on deformation characteristics of metals, IEEE Trans. Sonics Ultrason., 13(1966), No. 1, p. 1. doi: 10.1109/T-SU.1966.29367
|
[20] |
F. Blaha and B. Langenecker, Dehnung von Zink-Kristallen unter ultraschalleinwirkung, Naturwissenschaften, 42(1955), p. 556.
|
[21] |
M.R. Sriraman, M. Gonser, H.T. Fujii, S.S. Babu, and M. Bloss, Thermal transients during processing of materials by very high power ultrasonic additive manufacturing, J. Mater. Process. Technol., 211(2011), No. 10, p. 1650. doi: 10.1016/j.jmatprotec.2011.05.003
|
[22] |
G.S. Kelly, S.G. Advani, J.W. Gillespie Jr, and T.A. Bogetti, A model to characterize acoustic softening during ultrasonic consolidation, J. Mater. Process. Technol., 213(2013), No. 11, p. 1835. doi: 10.1016/j.jmatprotec.2013.05.008
|
[23] |
B. Meng, B.N. Cao, M. Wan, C.J. Wang, and D.B. Shan, Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet, Int. J. Mech. Sci., 157-158(2019), p. 609. doi: 10.1016/j.ijmecsci.2019.05.009
|
[24] |
Y. Daud, M. Lucas, and Z.H. Huang, Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium, J. Mater. Process. Technol., 186(2007), No. 1-3, p. 179. doi: 10.1016/j.jmatprotec.2006.12.032
|
[25] |
C.J. Wang, Y. Liu, B. Guo, D.B. Shan, and B. Zhang, Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil: Experiments and modeling, Mater. Des., 112(2016), p. 246. doi: 10.1016/j.matdes.2016.09.042
|
[26] |
J.C. Hung and Y.C. Tsai, Investigation of the effects of ultrasonic vibration-assisted micro-upsetting on brass, Mater. Sci. Eng. A, 580(2013), p. 125. doi: 10.1016/j.msea.2013.04.074
|
[27] |
Y.X. Liu, Q.Y. Han, L. Hua, and C. Xu, Numerical and experimental investigation of upsetting with ultrasonic vibration of pure copper cone tip, Ultrasonics, 53(2013), No. 3, p. 803. doi: 10.1016/j.ultras.2012.11.010
|
[28] |
Q. Mao, N. Coutris, H. Rack, G. Fadel, and J. Gibert, Investigating ultrasound-induced acoustic softening in aluminum and its alloys, Ultrasonics, 102(2020), art. No. 106005. doi: 10.1016/j.ultras.2019.106005
|
[29] |
Y. Liu, C.J. Wang, and R.G. Bi, Acoustic residual softening and microstructure evolution of T2 copper foil in ultrasonic vibration assisted micro-tension, Mater. Sci. Eng. A, 841(2022), art. No. 143044. doi: 10.1016/j.msea.2022.143044
|
[30] |
J.R. Kang, X. Liu, and M.J. Xu, Plastic deformation of pure copper in ultrasonic assisted micro-tensile test, Mater. Sci. Eng. A, 785(2020), art. No. 139364. doi: 10.1016/j.msea.2020.139364
|
[31] |
H. Huang, A. Pequegnat, B.H. Chang, M. Mayer, D. Du, and Y. Zhou, Influence of superimposed ultrasound on deformability of Cu, J. Appl. Phys., 106(2009), No. 11, p. 113514. doi: 10.1063/1.3266170
|
[32] |
Z.H. Yao, G.Y. Kim, Z.H. Wang, et al., Acoustic softening and residual hardening in aluminum: Modeling and experiments, Int. J. Plast., 39(2012), p. 75. doi: 10.1016/j.ijplas.2012.06.003
|
[33] |
I. Lum, H. Huang, B.H. Chang, M. Mayer, D. Du, and Y. Zhou, Effects of superimposed ultrasound on deformation of gold, J. Appl. Phys., 105(2009), No. 2, art. No. 024905. doi: 10.1063/1.3068352
|
[34] |
T.F. Zhou and C.F. Ma, Study of ultrasonic vibration-assisted forming in copper cylinder compression, Procedia Manuf., 50(2020), p. 199. doi: 10.1016/j.promfg.2020.08.037
|
[35] |
R.K. Dutta, R.H. Petrov, R. Delhez, M.J.M. Hermans, I.M. Richardson, and A.J. Böttger, The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel, Acta Mater., 61(2013), No. 5, p. 1592. doi: 10.1016/j.actamat.2012.11.036
|
[36] |
J.R. Kang and X. Liu, Ultrasonic effect on the deformation behavior and microstructure evolution of a TRIP-assisted steel, Metall. Mater. Trans. A, 52(2021), No. 10, p. 4468. doi: 10.1007/s11661-021-06398-z
|
[37] |
K.W. Siu, A.H.W. Ngan, and I.P. Jones, New insight on acoustoplasticity–Ultrasonic irradiation enhances subgrain formation during deformation, Int. J. Plast., 27(2011), No. 5, p. 788. doi: 10.1016/j.ijplas.2010.09.007
|
[38] |
K.H. Westmacott and B. Langenecker, Dislocation structure in ultrasonically irradiated aluminum, Phys. Rev. Lett., 14(1965), No. 7, p. 221. doi: 10.1103/PhysRevLett.14.221
|
[39] |
K. Srivastava, D. Weygand, D. Caillard, and P. Gumbsch, Repulsion leads to coupled dislocation motion and extended work hardening in bcc metals, Nat. Commun., 11(2020), No. 1, art. No. 5098. doi: 10.1038/s41467-020-18774-1
|
[40] |
A. Prabhakar, G.C. Verma, H. Krishnasamy, P.M. Pandey, M.G. Lee, and S. Suwas, Dislocation density based constitutive model for ultrasonic assisted deformation, Mech. Res. Commun., 85(2017), p. 76. doi: 10.1016/j.mechrescom.2017.08.003
|
[41] |
Q.C. Ma, J.Y. Ma, J.L. Zhou, X.X. Zheng, and H.J. Ji, Dislocation behavior in Cu single crystal joints under the ultrasonically excited high-strain-rate deformation, J. Mater. Sci. Technol., 141(2023), p. 66. doi: 10.1016/j.jmst.2022.09.011
|
[42] |
J. Wang, X.F. He, H. Cao, L.X. Jia, Y.K. Dou, and W. Yang, Screw dislocation slip and its interaction with ½[ $11 \bar1 $] dislocation loop in bcc-Fe at different temperatures, Acta Phys. Sin., 70(2021), No. 6, art. No. 068701. doi: 10.7498/aps.70.20201659
|
[43] |
J. Wang, X.F. He, H. Cao, D.J. Wang, Y.K. Dou, and W. Yang, Molecular dynamics simulation on interaction between screw dislocation and [010] interstitial dislocation loop in BCC-Fe, At. Energy Sci. Technol., 55(2021), No. 7, p. 1210.
|
[44] |
M. Zohrevand, M. Aghaie-Khafri, F. Forouzan, and E. Vuorinen, Softening mechanisms in ultrasonic treatment of deformed austenitic stainless steel, Ultrasonics, 116(2021), art. No. 106519. doi: 10.1016/j.ultras.2021.106519
|
[45] |
X.X. Wang, Z.C. Qi, and W.L. Chen, Investigation of mechanical and microstructural characteristics of Ti–45Nb undergoing transversal ultrasonic vibration-assisted upsetting, Mater. Sci. Eng. A, 813(2021), art. No. 141169. doi: 10.1016/j.msea.2021.141169
|
[46] |
G. Nevill, Effect of Vibrations on the Yield Strength of a Low Carbon Steel [Dissertation], Rice University, Houston, 1957.
|
[47] |
M.D. Hoseini, M. Shalvandi, and A. Salimiasl, Experimental and theatrical evaluation of the effect of grain size of S355J2 on acoustic softening, Modares Mech. Eng., 18(2018), No. 9, p. 40.
|
[48] |
M.T. Ken, H. Jun, T. Shimizu, and Y. Ming, Shearing characteristics in ultrasonic vibration-assisted piercing of fine-grained stainless steel foils, Procedia Manuf., 15(2018), p. 627. doi: 10.1016/j.promfg.2018.07.287
|
[49] |
O. Sitdikov, E. Avtokratova, O. Latypova, and M. Markushev, Structure, strength and superplasticity of ultrafine-grained 1570C aluminum alloy subjected to different thermomechanical processing routes based on severe plastic deformation, Trans. Nonferrous Met. Soc. China, 31(2021), No. 4, p. 887. doi: 10.1016/S1003-6326(21)65547-4
|
[50] |
Y.L. Deng, B. Shan, J. Zhang, Y. Wang, and S. Zhang, Effect of tensile stress on microstructures and properties of creep aged 6N01 aluminum alloy, J. Cent. South Univ. Sci. Technol., 49(2018), No. 6, p. 1358.
|
[51] |
X. X. Wang, Z.C. Qi, and W.L. Chen, Investigation of Ti–45Nb alloy’s mechanical and microscopic behaviors under transverse ultrasonic vibration-assisted compression, Mater. Sci. Eng. A, 832(2022), art. No. 142401. doi: 10.1016/j.msea.2021.142401
|
[52] |
A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Hairullin, and E.A. Sinyakova, Mechanisms of surface roughening of commercial purity titanium during ultrasonic impact treatment, Mater. Sci. Eng. A, 647(2015), p. 43. doi: 10.1016/j.msea.2015.08.086
|
[53] |
H.Y. Zhou, H.Z. Cui, Q.H. Qin, H. Wang, and Y.G. Shen, A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing, Mater. Sci. Eng. A, 682(2017), p. 376. doi: 10.1016/j.msea.2016.11.021
|
[54] |
J. Liao, L.X. Zhang, H.L. Xiang, and X. Xue, Mechanical behavior and microstructure evolution of AZ31 magnesium alloy sheet in an ultrasonic vibration-assisted hot tensile test, J. Alloys Compd., 895(2022), art. No. 162575. doi: 10.1016/j.jallcom.2021.162575
|
[55] |
T.J. Gao, K.X. Wang, H.T. Lu, and Y. Yang, Effect of compound energy-field with temperature and ultrasonic vibration on mechanical properties of TC2 titanium alloy, J. Wuhan Univ. Technol. Mater. Sci. Ed., 37(2022), No. 1, p. 85. doi: 10.1007/s11595-022-2502-6
|
[56] |
S.S. Jiang, Y. Jia, H.B. Zhang, et al., Plastic deformation behavior of Ti foil under ultrasonic vibration in tension, J. Mater. Eng. Perform., 26(2017), No. 4, p. 1769. doi: 10.1007/s11665-017-2598-6
|
[57] |
J. Han, C. Wang, Y.M. Song, Z.Y. Liu, J.P. Sun, and J.Y. Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1551. doi: 10.1007/s12613-021-2294-2
|
[58] |
H. Ye, X. Sun, Y. Liu, X.X. Rao, and Q. Gu, Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy, Surf. Coat. Technol., 372(2019), p. 288. doi: 10.1016/j.surfcoat.2019.05.035
|
[59] |
T. Wen, L. Wei, X. Chen, and C.L. Pei, Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 70. doi: 10.1007/s12613-011-0402-4
|
[60] |
Z.D. Xie, Y.J. Guan, X.H. Yu, L.H. Zhu, and J. Lin, Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation, J. Cent. South Univ., 25(2018), No. 7, p. 1545. doi: 10.1007/s11771-018-3847-z
|
[61] |
T. Liu, J. Lin, Y.J. Guan, Z.D. Xie, L.H. Zhu, and J.Q. Zhai, Effects of ultrasonic vibration on the compression of pure titanium, Ultrasonics, 89(2018), p. 26. doi: 10.1016/j.ultras.2018.04.006
|
[62] |
A.T. Bozdana, N.N.Z. Gindy, and H. Li, Deep cold rolling with ultrasonic vibrations–A new mechanical surface enhancement technique, Int. J. Mach. Tools Manuf., 45(2005), No. 6, p. 713. doi: 10.1016/j.ijmachtools.2004.09.017
|
[63] |
J. Zhao and Z.Q. Liu, Investigations of ultrasonic frequency effects on surface deformation in rotary ultrasonic roller burnishing Ti–6Al–4V, Mater. Des., 107(2016), p. 238. doi: 10.1016/j.matdes.2016.06.024
|
[64] |
S. Liu, X.B. Shan, K. Guo, Y.C. Yang, and T. Xie, Experimental study on titanium wire drawing with ultrasonic vibration, Ultrasonics, 83(2018), p. 60. doi: 10.1016/j.ultras.2017.08.003
|
[65] |
C.Q. Yang, X.B. Shan, and T. Xie, Titanium wire drawing with longitudinal-torsional composite ultrasonic vibration, Int. J. Adv. Manuf. Technol., 83(2016), No. 1, p. 645.
|
[66] |
K. Siegert and J. Ulmer, Influencing the friction in metal forming processes by superimposing ultrasonic waves, CIRP Ann., 50(2001), No. 1, p. 195. doi: 10.1016/S0007-8506(07)62103-9
|
[67] |
S. Liu, T. Xie, J. Han, and X.B. Shan, Stress superposition effect in ultrasonic drawing of titanium wires: An experimental study, Ultrasonics, 125(2022), art. No. 106775. doi: 10.1016/j.ultras.2022.106775
|