Tingting Li and Jian Yang, Development in oxide metallurgy for improving the weldability of high-strength low-alloy steel—Combined deoxidizers and microalloying elements, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1263-1284. https://doi.org/10.1007/s12613-023-2754-y
Cite this article as:
Tingting Li and Jian Yang, Development in oxide metallurgy for improving the weldability of high-strength low-alloy steel—Combined deoxidizers and microalloying elements, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1263-1284. https://doi.org/10.1007/s12613-023-2754-y
Invited Review

Development in oxide metallurgy for improving the weldability of high-strength low-alloy steel—Combined deoxidizers and microalloying elements

+ Author Affiliations
  • Corresponding author:

    Jian Yang    E-mail: yang_jian@t.shu.edu.cn

  • Received: 13 June 2023Revised: 10 September 2023Accepted: 26 September 2023Available online: 28 September 2023
  • The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite (IAF) using micron-sized inclusions and restricting the growth of prior austenite grains (PAGs) by nanosized particles during welding. The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel, resulting in high impact toughness. This work summarizes the combined effect of deoxidizers and alloying elements, with the aim to provide a new perspective for the research and practice related to improving the impact toughness of the heat affected zone (HAZ) during the high heat input welding. Ti complex deoxidation with other strong deoxidants, such as Mg, Ca, Zr, and rare earth metals (REMs), can improve the toughness of the heat-affected zone (HAZ) by refining PAGs or increasing IAF contents. However, it is difficult to identify the specific phase responsible for IAF nucleation because effective inclusions formed by complex deoxidation are usually multiphase. Increasing alloying elements, such as C, Si, Al, Nb, or Cr, contents can impair HAZ toughness. A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation. Si, Cr, or Al addition leads to the formation of undesirable microstructures. Nb reduces the high-temperature stability of the precipitates. Mo, V, and B can enhance HAZ toughness. Mo-containing precipitates present good thermal stability. VN or V(C,N) is effective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite. The formation of the B-depleted zone around the inclusion promotes IAF formation. The interactions between alloying elements are complex, and the effect of adding different alloying elements remains to be evaluated. In the future, the interactions between various alloying elements and their effects on oxide metallurgy, as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.
  • loading
  • [1]
    Y.H. Zhang, J. Yang, H.L. Du, Y. Zhang, and H. Ma, Effect of Ca deoxidation on toughening of heat-affected zone in high-strength low-alloy steels after large-heat-input welding, Metals, 12(2022), No. 11, p. 1830. doi: 10.3390/met12111830
    [2]
    R.M. Geng, J. Li, C.B. Shi, J.G. Zhi, and B. Lu, Effect of Ce on microstructures, carbides and mechanical properties in simulated coarse-grained heat-affected zone of 800-MPa high-strength low-alloy steel, Mater. Sci. Eng. A, 840(2022), art. No. 142919. doi: 10.1016/j.msea.2022.142919
    [3]
    M.J. Zhao, L.H. Jiang, C.M. Li, L. Huang, C.Y. Sun, J.J. Li, and Z.H. Guo, Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 323. doi: 10.1007/s12613-023-2736-0
    [4]
    J. Kang, C.N. Li, X.L. Li, J.H. Zhao, G. Yuan, and G.D. Wang, Effects of processing variables on microstructure and yield ratio of high strength constructional steels, J. Iron Steel Res. Int., 23(2016), No. 8, p. 815. doi: 10.1016/S1006-706X(16)30125-X
    [5]
    P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
    [6]
    M.H. Liu, Z.Y. Liu, C.W. Du, et al., Effect of cathodic potential on stress corrosion cracking behavior of 21Cr2NiMo steel in simulated seawater, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 263. doi: 10.1007/s12613-020-2199-5
    [7]
    E.D. Fan, S.Q. Zhang, D.H. Xie, Q.Y. Zhao, X.G. Li, and Y.H. Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 249. doi: 10.1007/s12613-020-2167-0
    [8]
    E.D. Fan, Y. Li, Y. You, and X.W. Lü, Effect of crystallographic orientation on crack growth behaviour of HSLA steel, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1532. doi: 10.1007/s12613-022-2415-6
    [9]
    D.P. Zhu, W. Zhang, Z.X. Ding, and J. Kim, Investigation of crack propagation driving force based on crystal plasticity and cyclic J-integral, Eng. Fract. Mech., 289(2023), art. No. 109362. doi: 10.1016/j.engfracmech.2023.109362
    [10]
    Y.D. Wang, Z.H. Tang, S.F. Xiao, C. WSiyasiya, and T. Wei, Effects of final rolling temperature and coiling temperature on precipitates and microstructure of high-strength low-alloy pipeline steel, J. Iron Steel Res. Int., 29(2022), No. 8, p. 1236. doi: 10.1007/s42243-021-00659-2
    [11]
    Y. Liu, G.Q. Li, X.L. Wan, X.G. Zhang, Y. Shen, and K.M. Wu, Toughness improvement by Zr addition in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels, Ironmaking Steelmaking, 46(2019), No. 2, p. 113. doi: 10.1080/03019233.2017.1353763
    [12]
    W.L. Wang, L.K. Wang, and P.S. Lyu, Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by sub-rapid solidification, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 354. doi: 10.1007/s12613-022-2548-7
    [13]
    X. Wang, C. Wang, J. Kang, G. Yuan, R.D.K. Misra, and G.D. Wang, Improved toughness of double-pass welding heat affected zone by fine Ti–Ca oxide inclusions for high-strength low-alloy steel, Mater. Sci. Eng. A, 780(2020), art. No. 139198. doi: 10.1016/j.msea.2020.139198
    [14]
    T. Funakoshi, T. Tanaka, S. Ueda, M. Ishikawa, N. Koshizuka, and K. Kobayashi, Improvement in microstructure and toughness of large heat-input weld bond of high strength steel due to addition of rare earth metals and boron, ISIJ Int., 17(1977), No. 7, p. 419. doi: 10.2355/isijinternational1966.17.419
    [15]
    H.N. Lou, C. Wang, B.X. Wang, Z.D. Wang, and R.D.K. Misra, Effect of Ti–Mg–Ca treatment on properties of heat-affected zone after high heat input welding, J. Iron Steel Res. Int., 26(2019), No. 5, p. 501. doi: 10.1007/s42243-018-0091-6
    [16]
    J. Yang, K. Zhu, R.Z. Wang, and J.G. Shen, Improving the toughness of heat affected zone of steel plate by use of fine inclusion particles, Steel Res. Int., 82(2011), No. 5, p. 552. doi: 10.1002/srin.201100046
    [17]
    C. Ouchi, Development of steel plates by intensive use of TMCP and direct quenching processes, ISIJ Int., 41(2001), No. 6, p. 542. doi: 10.2355/isijinternational.41.542
    [18]
    X.Q. Pan, J.J. Zhi, Z.J. Fan, Y.H. Zhang, and J. Yang, Relationship between the microstructure and impact toughness of the coarse-grained heat-affected zone for offshore engineering steels with different Mg contents, Steel Res. Int., 92(2021), No. 10, art. No. 2100099. doi: 10.1002/srin.202100099
    [19]
    M.H. Shi, P.Y. Zhang, C. Wang, and F.X. Zhu, Effect of high heat input on toughness and microstructure of coarse grain heat affected zone in Zr bearing low carbon steel, ISIJ Int., 54(2014), No. 4, p. 932. doi: 10.2355/isijinternational.54.932
    [20]
    B.W. Zhou, G.Q. Li, X.L. Wan, Y. Li, and K.M. Wu, In-situ observation of grain refinement in the simulated heat-affected zone of high-strength low-alloy steel by Zr–Ti combined deoxidation, Met. Mater. Int., 22(2016), No. 2, p. 267. doi: 10.1007/s12540-016-5301-9
    [21]
    A.M. Guo, S.R. Li, J. Guo, et al., Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel, Mater. Charact., 59(2008), No. 2, p. 134. doi: 10.1016/j.matchar.2006.11.028
    [22]
    Y. Shen, X.L. Wan, Y. Liu, G.Q. Li, Z.L. Xue, and K.M. Wu, The significant impact of Ti content on microstructure–toughness relationship in the simulated coarse-grained heated-affected zone of high-strength low-alloy steels, Ironmaking Steelmaking, 46(2019), No. 6, p. 584. doi: 10.1080/03019233.2018.1533608
    [23]
    W.Z. Mu, P.G. Jönsson, and K. Nakajima, Recent aspects on the effect of inclusion characteristics on the intragranular ferrite formation in low alloy steels: A review, High Temp. Mater. Process., 36(2017), No. 4, p. 309. doi: 10.1515/htmp-2016-0175
    [24]
    D.S. Sarma, A.V. Karasev, and P.G. Jönsson, On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels, ISIJ Int., 49(2009), No. 7, p. 1063. doi: 10.2355/isijinternational.49.1063
    [25]
    S.S. Babu, The mechanism of acicular ferrite in weld deposits, Curr. Opin. Solid State Mater. Sci., 8(2004), No. 3-4, p. 267. doi: 10.1016/j.cossms.2004.10.001
    [26]
    T. Koseki, and G. Thewlis, Overview inclusion assisted microstructure control in C–Mn and low alloy steel welds, Mater. Sci. Technol., 21(2005), No. 8, P. 867. doi: 10.1179/174328405X51703
    [27]
    Y. Shao, C.X. Liu, Z.S. Yan, H.J. Li, and Y.C. Liu, Formation mechanism and control methods of acicular ferrite in HSLA steels: A review, J. Mater. Sci. Technol., 34(2018), No. 5, p. 737. doi: 10.1016/j.jmst.2017.11.020
    [28]
    Z.T. Ma, D. Peisker, and D. Janke, Grain refining of structural steels by dispersion of fine oxide particles, Steel Res., 70(1999), No. 4-5, p. 178. doi: 10.1002/srin.199905622
    [29]
    W. Liang, R.M. Geng, J.G. Zhi, J. Li, and F. Huang, Oxide metallurgy technology in high strength steel: A review, Materials, 15(2022), No. 4, art. No. 1350. doi: 10.3390/ma15041350
    [30]
    F. Pan, J. Zhang, H.L. Chen, et al., Effects of rare earth metals on steel microstructures, Materials, 9(2016), No. 6, art. No. E417. doi: 10.3390/ma9060417
    [31]
    J. Yang, K. Zhu, and G.D. Wang, Progress in the technological development of oxide metallurgy for manufacturing steel plates with excellent HAZ toughness, Baosteel Tech. Res., 2(2008), No. 4, p. 43.
    [32]
    X.Q. Pan, J. Yang, Y.H. Zhang, and R.B. Li, Effect of Si content on the microstructures and toughness in heat-affected zone of offshore engineering steels with Mg deoxidation, Steel Res. Int., 94(2023), No. 3, art. No. 2200534. doi: 10.1002/srin.202200534
    [33]
    Z.F. Wang, M.H. Shi, S. Tang, and G.D. Wang, Effect of heat input and M–A constituent on microstructure evolution and mechanical properties of heat affected zone in low carbon steel, J. Wuhan Univ. Technol. Mater. Sci. Ed., 32(2017), No. 5, p. 1163. doi: 10.1007/s11595-017-1726-3
    [34]
    Y.K. Yang, D.P. Zhan, H. Lei, et al., Coupling effect of prior austenite grain size and inclusion characteristics on acicular ferrite formation in Ti–Zr deoxidized low carbon steel, Metall. Mater. Trans. B, 51(2020), No. 2, p. 480. doi: 10.1007/s11663-020-01785-0
    [35]
    X.J. Liu, G. Yuan, R.D.K. Misra, and G.D. Wang, A comparative study of acicular ferrite transformation behavior between surface and interior in a low C–Mn steel by HT-LSCM, Metals, 11(2021), No. 5, art. No. 699. doi: 10.3390/met11050699
    [36]
    B. Hwang, C.G. Lee, and T.H. Lee, Correlation of microstructure and mechanical properties of thermomechanically processed low-carbon steels containing boron and copper, Metall. Mater. Trans. A, 41(2010), No. 1, p. 85. doi: 10.1007/s11661-009-0070-4
    [37]
    L.Y. Xu, J. Yang, R.Z. Wang, Y.N. Wang, and W.L. Wang, Effect of Mg content on the microstructure and toughness of heat-affected zone of steel plate after high heat input welding, Metall. Mater. Trans. A, 47(2016), No. 7, p. 3354. doi: 10.1007/s11661-016-3535-2
    [38]
    X. Wang, C. Wang, J. Kang, G.D. Wang, D. Misra, and G. Yuan, Relationship between impact toughness and microstructure for the as-rolled and simulated HAZ of low-carbon steel containing Ti–Ca oxide particles, Metall. Mater. Trans. A, 51(2020), No. 6, p. 2927. doi: 10.1007/s11661-020-05753-w
    [39]
    X.Q. Pan, J.J. Zhi, Z.J. Fan, Y.H. Zhang, R.B. Li, and J. Yang, Morphology and crystallography of microstructures in Mg-deoxidized offshore engineering steels after simulated welding thermal cycles, Ironmaking Steelmaking, 49(2022), No. 5, p. 541. doi: 10.1080/03019233.2021.2023850
    [40]
    Y.S. Yu, B. Hu, M.L. Gao, et al., Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 816. doi: 10.1007/s12613-020-2235-5
    [41]
    T. Furuhara, T. Shinyoshi, G. Miyamoto, et al., Multiphase crystallography in the nucleation of intragranular ferrite on MnS+V(C,N) complex precipitate in austenite, ISIJ Int., 43(2003), No. 12, p. 2028. doi: 10.2355/isijinternational.43.2028
    [42]
    R.A. Ricks, P.R. Howell, and G.S. Barritte, The nature of acicular ferrite in HSLA steel weld metals, J. Mater. Sci., 17(1982), No. 3, p. 732. doi: 10.1007/BF00540369
    [43]
    H.H. Jin, J.H. Shim, Y.W. Cho, and H.C. Lee, Formation of intragranular acicular ferrite grains in a Ti-containing low carbon steel, ISIJ Int., 43(2003), No. 7, p. 1111. doi: 10.2355/isijinternational.43.1111
    [44]
    H. Mabuchi, R. Uemori, and M. Fujioka, The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels, ISIJ Int., 36(1996), No. 11, p. 1406. doi: 10.2355/isijinternational.36.1406
    [45]
    J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C–Mn steel, Acta Mater., 51(2003), No. 6, p. 1593. doi: 10.1016/S1359-6454(02)00560-8
    [46]
    G. Thewlis, J.A. Whiteman, and D.J. Senogles, Dynamics of austenite to ferrite phase transformation in ferrous weld metals, Mater. Sci. Technol., 13(1997), No. 3, p. 257. doi: 10.1179/mst.1997.13.3.257
    [47]
    X. Wang, C. Wang, J. Kang, G. Yuan, R.D.K. Misra, and G.D. Wang, An in situ microscopy study on nucleation and growth of acicular ferrite in Ti–Ca–Zr deoxidized low-carbon steel, Mater. Charact., 165(2020), art. No. 110381. doi: 10.1016/j.matchar.2020.110381
    [48]
    Y. Terazawa, K. Ichimiya, and K. Hase, Nucleation effect of Ca-oxysulfide inclusions of low carbon steel in heat affected zone by welding, Mater. Sci. Forum, 941(2018), p. 130. doi: 10.4028/www.scientific.net/MSF.941.130
    [49]
    L.Y. Xu, J. Yang, R.Z. Wang, W.L. Wang, and Y.N. Wang, Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding, J. Iron Steel Res. Int., 25(2018), No. 4, p. 433. doi: 10.1007/s42243-018-0054-y
    [50]
    L.Y. Xu, J. Yang, and R.Z. Wang, Influence of Al content on the inclusion-microstructure relationship in the heat-affected zone of a steel plate with Mg deoxidation after high-heat-input welding, Metals, 8(2018), No. 12, art. No. 1027. doi: 10.3390/met8121027
    [51]
    S. St-Laurent and G. L'Espérance, Effects of chemistry, density and size distribution of inclusions on the nucleation of acicular ferrite of C–Mn steel shielded-metal-arc-welding weldments, Mater. Sci. Eng. A, 149(1992), No. 2, p. 203. doi: 10.1016/0921-5093(92)90381-A
    [52]
    Z.H. Wu, W. Zheng, G.Q. Li, H. Matsuura, and F. Tsukihashi, Effect of inclusions’ behavior on the microstructure in Al–Ti deoxidized and magnesium-treated steel with different aluminum contents, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1226. doi: 10.1007/s11663-015-0311-4
    [53]
    J.L. Lee and Y.T. Pan, Effect of sulfur content on the microstructure and toughness of simulated heat-affected zone in Ti-killed steels, Metall. Trans. A, 24(1993), No. 6, p. 1399. doi: 10.1007/BF02668208
    [54]
    X.S. Tian, L.F. Zhu, Z.Y. Cai, and H. Kong, The relationship between MnS precipitation and induced nucleation effect of Mg-bearing inclusion, High Temp. Mater. Process., 37(2018), No. 8, p. 711. doi: 10.1515/htmp-2016-0259
    [55]
    X.Z. Gao, S.F. Yang, J.S. Li, H. Liao, W. Gao, and T. Wu, Addition of MgO nanoparticles to carbon structural steel and the effect on inclusion characteristics and microstructure, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1124. doi: 10.1007/s11663-015-0552-2
    [56]
    F.J. Barbaro, P. Krauklis, and K.E. Easterling, Formation of acicular ferrite at oxide particles in steels, Mater. Sci. Technol., 5(1989), No. 11, p. 1057. doi: 10.1179/mst.1989.5.11.1057
    [57]
    B. Kim, S. Uhm, C. Lee, J. Lee, and Y. An, Effects of inclusions and microstructures on impact energy of high heat-input submerged-arc-weld metals, J. Eng. Mater. Technol., 127(2005), No. 2, p. 204. doi: 10.1115/1.1857933
    [58]
    D.K. Liu, J. Yang, and Y.H. Zhang, In-situ observation of bainite transformation in CGHAZ of 420 MPa grade offshore engineering steel with different Mo contents, ISIJ Int., 62(2022), No. 4, p. 714. doi: 10.2355/isijinternational.ISIJINT-2021-396
    [59]
    H. Suito, A.V. Karasev, M. Hamada, R. Inoue, and K. Nakajima, Influence of oxide particles and residual elements on microstructure and toughness in the heat-affected zone of low-carbon steel deoxidized with Ti and Zr, ISIJ Int., 51(2011), No. 7, p. 1151. doi: 10.2355/isijinternational.51.1151
    [60]
    S. Kanazawa, A. Nakashima, K. Okamoto, and K. Kanaya, Improved toughness of weld fussion zone by fine TiN particles and development of a steel for large heat input welding, Tetsu-to-Hagane, 61(1975), No. 11, p. 2589. doi: 10.2355/tetsutohagane1955.61.11_2589
    [61]
    J. Takamura and S. Mizoguchi, Roles of oxides in steels performance, [in] Proceedings of the 6th International Iron and Steel Congress, Japan, 1990, p. 591.
    [62]
    Y. Wang, L.G. Zhu, Q.J. Zhang, C.J. Zhang, and S.M. Wang, Effect of Mg treatment on refining the microstructure and improving the toughness of the heat-affected zone in shipbuilding steel, Metals, 8(2018), No. 8, art. No. 616. doi: 10.3390/met8080616
    [63]
    J. Yang, L.Y. Xu, K. Zhu, R.Z. Wang, L.J. Zhou, and W.L. Wang, Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation, Steel Res. Int., 86(2015), No. 6, p. 619. doi: 10.1002/srin.201400313
    [64]
    X.D. Zou, D.P. Zhao, J.C. Sun, C. Wang, and H. Matsuura, An integrated study on the evolution of inclusions in EH36 shipbuilding steel with Mg addition: From casting to welding, Metall. Mater. Trans. B, 49(2018), No. 2, p. 481. doi: 10.1007/s11663-017-1163-x
    [65]
    A. Kojima, A. Kiyose, R. Uemori, et al., Super high HAZ toughness technology with fine microstructure imparted by fine particles, Nippon Steel Tech. Rep., 90(2004), p. 2.
    [66]
    T. Kimura, H. Sumi, and Y. Kitani, High tensile strength steel plates and welding consumables for architectural construction with excellent toughness in welded joint – “JFE EWEL” technology for excellent quality in HAZ of high heat input welded joints, JFE Tech. Rep., (2005), No. 5, p. 45.
    [67]
    T. Kato, S. Sato, H. Ohta, and T. Shiwaku, Effects of Ca addition on formation behavior of TiN particles and HAZ toughness in large heat input welding, Kobelco Technol. Rev., 30(2011), p. 76.
    [68]
    Y. Jian, Z. Kai, W.R. Zhi, and S.J. Guo, Excellent heat affected zone toughness technology improved by use of strong deoxidizers, J. Iron Steel Res. Int., 18(2011), No. S2, p. 141.
    [69]
    J.H. Shim, Y.J. Oh, J.Y. Suh, et al., Ferrite nucleation potency of non-metallic inclusions in medium carbon steels, Acta Mater., 49(2001), No. 12, p. 2115. doi: 10.1016/S1359-6454(01)00134-3
    [70]
    J.S. Byun, J.H. Shim, J.Y. Suh, et al., Inoculated acicular ferrite microstructure and mechanical properties, Mater. Sci. Eng. A, 319-321(2001), p. 326. doi: 10.1016/S0921-5093(00)02014-1
    [71]
    K. Hui, S. Shao, Y.F. Shen, et al., Effect of aluminum on the nucleation of intragranular ferrite in Ti-added carbon structural steel, High Temp. Mater. Process., 32(2013), No. 3, p. 323. doi: 10.1515/htmp-2012-0139
    [72]
    S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao, Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 645. doi: 10.1007/s12613-021-2399-7
    [73]
    F. Chai, C.F. Yang, H. Su, Y.Q. Zhang, and D.D. Zhang, Effect of aluminum and titanium treatment on non-metallic inclusions and microstructures of CGHAZ in HSLA steel, J. Iron Steel Res. Int., 18(2011), No. S1, p. 360.
    [74]
    C.J. Xuan, W.Z. Mu, Z.I. Olano, P.G. Jönsson, and K. Nakajima, Effect of the Ti, Al contents on the inclusion characteristics in steels with TiO2 and TiN particle additions, Steel Res. Int., 87(2016), No. 7, p. 911. doi: 10.1002/srin.201500267
    [75]
    Z.H. Xiong, S.L. Liu, X.M. Wang, C.J. Shang, and R.D.K. Misra, Relationship between crystallographic structure of the Ti2O3/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness, Mater. Charact., 106(2015), p. 232. doi: 10.1016/j.matchar.2015.06.001
    [76]
    K. Seo, Y.M. Kim, G.M. Evans, H.J. Kim, and C. Lee, Formation of Mn-depleted zone in Ti-containing weld metals, Weld. World, 59(2015), No. 3, p. 373. doi: 10.1007/s40194-014-0207-y
    [77]
    F. Chai, H. Su, C.F. Yang, and D.M. Xue, Nucleation behavior analysis of intragranular acicular ferrite in a Ti-killed C–Mn steel, J. Iron Steel Res. Int., 21(2014), No. 3, p. 369. doi: 10.1016/S1006-706X(14)60057-1
    [78]
    T. Yamada, H. Terasaki, and Y.I. Komizo, Relation between inclusion surface and acicular ferrite in low carbon low alloy steel weld, ISIJ Int., 49(2009), No. 7, p. 1059. doi: 10.2355/isijinternational.49.1059
    [79]
    K. Yamamoto, T. Hasegawa, and J.I. Takamura, Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels, ISIJ Int., 36(1996), No. 1, p. 80. doi: 10.2355/isijinternational.36.80
    [80]
    A.R. Mills, G. Thewlis, and J.A. Whiteman, Nature of inclusions in steel weld metals and their influence on formation of acicular ferrite, Mater. Sci. Technol., 3(1987), No. 12, p. 1051. doi: 10.1179/mst.1987.3.12.1051
    [81]
    J.H. Shim, J.S. Byun, Y.W. Cho, Y.J. Oh, J.D. Shim, and D.N. Lee, Mn absorption characteristics of Ti2O3 inclusions in low carbon steels, Scripta Mater., 44(2001), No. 1, p. 49. doi: 10.1016/S1359-6462(00)00560-1
    [82]
    J.H. Shim, Y.W. Cho, S.H. Chung, J.D. Shim, and D.N. Lee, Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel, Acta Mater., 47(1999), No. 9, p. 2751. doi: 10.1016/S1359-6454(99)00114-7
    [83]
    M. Jiang, X.H. Wang, Z.Y. Hu, K.P. Wang, C.W. Yang, and S.R. Li, Microstructure refinement and mechanical properties improvement by developing IAF on inclusions in Ti–Al complex deoxidized HSLA steel, Mater. Charact., 108(2015), p. 58. doi: 10.1016/j.matchar.2015.08.018
    [84]
    S.F. Medina, M. Chapa, P. Valles, A. Quispe, and M.I. Vega, Influence of Ti and N contents on austenite grain control and precipitate size in structural steels, ISIJ Int., 39(1999), No. 9, p. 930. doi: 10.2355/isijinternational.39.930
    [85]
    Z.X. Zhu, J. Han, and H.J. Li, Effect of alloy design on improving toughness for X70 steel during welding, Mater. Des., 88(2015), p. 1326. doi: 10.1016/j.matdes.2015.09.073
    [86]
    I. Rak, V. Gliha, and M. Koçak, Weldability and toughness assessment of Ti-microalloyed offshore steel, Metall. Mater. Trans. A, 28(1997), No. 1, p. 199. doi: 10.1007/s11661-997-0096-4
    [87]
    Z.X. Zhu, L. Kuzmikova, M. Marimuthu, H.J. Li, and F. Barbaro, Role of Ti and N in line pipe steel welds, Sci. Technol. Weld. Joining, 18(2013), No. 1, p. 1. doi: 10.1179/1362171812Y.0000000067
    [88]
    R.Z. Wang, J. Yang, and L.Y. Xu, Improvement of heat-affected zone toughness of steel plates for high heat input welding by inclusion control with Ca deoxidation, Metals, 8(2018), No. 11, art. No. 946. doi: 10.3390/met8110946
    [89]
    Q.Y. Wang, X.D. Zou, H. Matsuura, and C. Wang, Evolution of inclusions during 1473 K heating process in EH36 shipbuilding steel with Mg addition, JOM, 70(2018), No. 4, p. 521. doi: 10.1007/s11837-017-2700-4
    [90]
    Z. Liu, B. Song, Z.B. Yang, et al., Effect of cerium content on the evolution of inclusions and formation of acicular ferrite in Ti–Mg-killed EH36 steel, Metals, 10(2020), No. 7, art. No. 863. doi: 10.3390/met10070863
    [91]
    C. Wang, X. Wang, J. Kang, G. Yuan, and G.D. Wang, Microstructure and mechanical properties of hot-rolled low-carbon steel containing Ti–Ca oxide particles: A comparison between base metal and HAZ, J. Iron Steel Res. Int., 27(2020), No. 4, p. 440. doi: 10.1007/s42243-019-00317-8
    [92]
    L. Liang, B. Zhang, L.Y. Yan, et al., Evolution behaviour of inclusions via oxide metallurgy of NM450 ultrahigh-strength steel, Mater. Res. Express, 8(2021), No. 10, art. No. 105602. doi: 10.1088/2053-1591/ac2cb2
    [93]
    S.Y. Shin, K. Oh, K.B. Kang, and S. Lee, Improvement of Charpy impact properties in heat affected zones of API X80 pipeline steels containing complex oxides, Mater. Sci. Technol., 26(2010), No. 9, p. 1049. doi: 10.1179/174328409X425218
    [94]
    L.Y. Xu, J. Yang, J. Park, and H. Ono, Mechanism of improving heat-affected zone toughness of steel plate with Mg deoxidation after high-heat-input welding, Metals, 10(2020), No. 2, art. No. 162. doi: 10.3390/met10020162
    [95]
    Y. Wang, L.G. Zhu, J.X. Huo, et al., Relationship between crystallographic structure of complex inclusions MgAl2O4/Ti2O3/MnS and improved toughness of heat-affected zone in shipbuilding steel, J. Iron Steel Res. Int., 29(2022), No. 8, p. 1277. doi: 10.1007/s42243-021-00725-9
    [96]
    L.G. Sun, H.R. Li, L.G. Zhu, Y.S. Liu, and J. Hwang, Research on the evolution mechanism of pinned particles in welding HAZ of Mg treated shipbuilding steel, Mater. Des., 192(2020), art. No. 108670. doi: 10.1016/j.matdes.2020.108670
    [97]
    X.D. Zou, J.C. Sun, H. Matsuura, and C. Wang, Documenting ferrite nucleation behavior differences in the heat-affected zones of EH36 shipbuilding steels with Mg and Zr additions, Metall. Mater. Trans. A, 50(2019), No. 10, p. 4506. doi: 10.1007/s11661-019-05387-7
    [98]
    Y. Liu, X.L. Wan, G.Q. Li, Y. Wang, W. Zheng, and Y.H. Hou, Grain refinement in coarse-grained heat-affected zone of Al–Ti–Mg complex deoxidised steel, Sci. Technol. Weld. Joining, 24(2019), No. 1, p. 43. doi: 10.1080/13621718.2018.1476804
    [99]
    H.N. Lou, C. Wang, B.X. Wang, Z.D. Wang, Y.Q. Li, and Z.G. Chen, Inclusion evolution behavior of Ti–Mg oxide metallurgy steel and its effect on a high heat input welding HAZ, Metals, 8(2018), No. 7, art. No. 534. doi: 10.3390/met8070534
    [100]
    L.Y. Xu, J. Yang, R.Z. Wang, W.L. Wang, and Z.M. Ren, Effect of welding heat input on microstructure and toughness of heated-affected zone in steel plate with Mg deoxidation, Steel Res. Int., 88(2017), No. 12, art. No. 1700157. doi: 10.1002/srin.201700157
    [101]
    B. Wen, B. Song, N. Pan, Q.Y. Hu, and J.H. Mao, Effect of SiMg alloy on inclusions and microstructures of 16Mn steel, Ironmaking Steelmaking, 38(2011), No. 8, p. 577. doi: 10.1179/1743281211Y.0000000010
    [102]
    F. Chai, C.F. Yang, H. Su, Y.Q. Zhang, and Z. Xu, Effect of magnesium on inclusion formation in Ti-killed steels and microstructural evolution in welding induced coarse-grained heat affected zone, J. Iron Steel Res. Int., 16(2009), No. 1, p. 69. doi: 10.1016/S1006-706X(09)60013-3
    [103]
    H. Kong, Y.H. Zhou, H. Lin, et al., The mechanism of intragranular acicular ferrite nucleation induced by Mg–Al–O inclusions, Adv. Mater. Sci. Eng., 2015(2015), art. No. 378678. doi: 10.1155/2015/378678
    [104]
    Y.H. Hou, W. Zheng, Z.H. Wu, et al., Study of Mn absorption by complex oxide inclusions in Al–Ti–Mg killed steels, Acta Mater., 118(2016), p. 8. doi: 10.1016/j.actamat.2016.07.027
    [105]
    L.Y. Xu and J. Yang, Effects of Mg content on characteristics of nanoscale TiN particles and toughness of heat-affected zones of steel plates after high-heat-input welding, Metall. Mater. Trans. A, 51(2020), No. 9, p. 4540. doi: 10.1007/s11661-020-05864-4
    [106]
    L.G. Zhu, Y. Wang, S.M. Wang, Q.J. Zhang, and C.J. Zhang, Research of microalloy elements to induce intragranular acicular ferrite in shipbuilding steel, Ironmaking Steelmaking, 46(2019), No. 6, p. 499. doi: 10.1080/03019233.2017.1405153
    [107]
    Y.H. Zhang, J. Yang, L.Y. Xu, et al., The effect of Ca content on the formation behavior of inclusions in the heat affected zone of thick high-strength low-alloy steel plates after large heat input weldings, Metals, 9(2019), No. 12, art. No. 1328. doi: 10.3390/met9121328
    [108]
    Z. Liu, B. Song, and J.H. Mao, Effect of Ca on the evolution of inclusions and the formation of acicular ferrite in Ti–Mg killed EH36 steel, Ironmaking Steelmaking, 48(2021), No. 9, p. 1115. doi: 10.1080/03019233.2021.1932198
    [109]
    X. Wang, Y. Chen, C. Wang, et al., Effect of heat input on microstructure and impact toughness of coarse-grained heat-affected zone in Al–Ca and Ti–Ca killed steels, Steel Res. Int., 91(2020), No. 9, art. No. 2000133. doi: 10.1002/srin.202000133
    [110]
    J.L. Lee and Y.T. Pan, The formation of intragranular acicular ferrite in simulated heat-affected zone, ISIJ Int., 35(1995), No. 8, p. 1027. doi: 10.2355/isijinternational.35.1027
    [111]
    Y.X. Cao, X.L. Wan, Y.H. Hou, C.R. Niu, Y. Liu, and G.Q. Li, In situ observation of grain refinement in the simulated heat-affected zone of Al–Ti–0.05% Ce-deoxidized steel, Steel Res. Int., 90(2019), No. 9, art. No. 1900084. doi: 10.1002/srin.201900084
    [112]
    Y.H. Zhang, J. Yang, D.K. Liu, X.Q. Pan, and L.Y. Xu, Improvement of impact toughness of the welding heat-affected zone in high-strength low-alloy steels through Ca deoxidation, Metall. Mater. Trans. A, 52(2021), No. 2, p. 668. doi: 10.1007/s11661-020-06105-4
    [113]
    M.H. Shi, X.G. Yuan, H.J. Huang, and S. Zhang, Effect of Zr addition on the microstructure and toughness of coarse-grained heat-affected zone with high-heat input welding thermal cycle in low-carbon steel, J. Mater. Eng. Perform., 26(2017), No. 7, p. 3160. doi: 10.1007/s11665-017-2758-8
    [114]
    F.C. Liu, Y. Bi, C. Wang, et al., Inclusion characteristics and acicular ferrite formation in the simulated heat-affected zone of Ti–Zr-killed low-carbon steel, Met. Mater. Int., 29(2023), No. 3, p. 715. doi: 10.1007/s12540-022-01254-0
    [115]
    H.B. Liu, J. Kang, X.J. Zhao, et al., Influence of Ca treatment on particle–microstructure relationship in heat-affected zone of shipbuilding steel with Zr–Ti deoxidation after high-heat-input welding, J. Iron Steel Res. Int., 29(2022), No. 8, p. 1291. doi: 10.1007/s42243-022-00791-7
    [116]
    X.D. Zou, J.C. Sun, D.P. Zhao, H. Matsuura, and C. Wang, Effects of Zr addition on evolution behavior of inclusions in EH36 shipbuilding steel: From casting to welding, J. Iron Steel Res. Int., 25(2018), No. 2, p. 164. doi: 10.1007/s42243-018-0022-6
    [117]
    Y. Li, X.L. Wan, L. Cheng, and K.M. Wu, First-principles calculation of the interaction of Mn with ZrO2 and its effect on the formation of ferrite in high-strength low-alloy steels, Scripta. Mater., 75(2014), p. 78. doi: 10.1016/j.scriptamat.2013.11.028
    [118]
    J.H. Ma, D.P. Zhan, Z.H. Jiang, J.C. He, and J. Yu, Effect of Ti, Zr and Mg addition on the impact toughness of heat affected zone in low carbon steel, Adv. Mater. Res., 146-147(2010), p. 1486. doi: 10.4028/www.scientific.net/AMR.146-147.1486
    [119]
    Y.K. Yang, D.P. Zhan, H. Lei, G.X. Qiu, Z.H. Jiang, and H.S. Zhang, Formation of non-metallic inclusion and acicular ferrite in Ti–Zr deoxidized steel, ISIJ Int., 59(2019), No. 9, p. 1545. doi: 10.2355/isijinternational.ISIJINT-2019-008
    [120]
    Y.X. Cao, X.L. Wan, F. Zhou, et al., Effect of Ce content on microstructure-toughness relationship in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels, Metals, 11(2021), No. 12, art. No. 2003. doi: 10.3390/met11122003
    [121]
    Y.X. Cao, X.L. Wan, Y.H. Hou, Y. Liu, M.M. Song, and G.Q. Li, Comparative study on the effect of Y content on grain refinement in the simulated coarse-grained heat-affected zone of X70 pipeline steels, Micron, 127(2019), art. No. 102758. doi: 10.1016/j.micron.2019.102758
    [122]
    M.M. Song, Y.M. Xie, B. Song, et al., The microstructure and property of the heat affected zone in C–Mn steel treated by rare earth, High Temp. Mater. Process., 38(2019), No. 2019, p. 362. doi: 10.1515/htmp-2017-0175
    [123]
    H. Nako, Y. Okazaki, and J.G. Speer, Acicular ferrite formation on Ti–rare earth metal–Zr complex oxides, ISIJ Int., 55(2015), No. 1, p. 250. doi: 10.2355/isijinternational.55.250
    [124]
    G. Thewlis, Effect of cerium sulphide particle dispersions on acicular ferrite microstructure development in steels, Mater. Sci. Technol., 22(2006), No. 2, p. 153. doi: 10.1179/026708306X81432
    [125]
    N. Yan, S.F. Yu, and Y. Chen, In situ observation of austenite grain growth and transformation temperature in coarse grain heat affected zone of Ce-alloyed weld metal, J. Rare Earths, 35(2017), No. 2, p. 203. doi: 10.1016/S1002-0721(17)60900-1
    [126]
    S.Y. Bian, H.M. Zhao, J.J. Wang, et al., Effect of alloy element on microstructure and properties of heat-affected zone, Mater. Sci. Technol., 38(2022), p. 1244. doi: 10.1080/02670836.2022.2076424
    [127]
    W.Z. Mu, H.H. Mao, P.G. Jönsson, and K. Nakajima, Effect of carbon content on the potency of the intragranular ferrite formation, Steel Res. Int., 87(2016), No. 3, p. 311. doi: 10.1002/srin.201500043
    [128]
    J.M. Gregg and H.K.D.H. Bhadeshia, Solid-state nucleation of acicular ferrite on minerals added to molten steel, Acta Mater., 45(1997), No. 2, p. 739. doi: 10.1016/S1359-6454(96)00187-5
    [129]
    S. Kim, Y.R. Im, S. Lee, H.C. Lee, S.J. Kim, and J.H. Hong, Effects of alloying elements on fracture toughness in the transition temperature region of base metals and simulated heat-affected zones of Mn–Mo–Ni low-alloy steels, Metall. Mater. Trans. A, 35(2004), No. 7, p. 2027. doi: 10.1007/s11661-004-0151-3
    [130]
    D.K. Liu, J. Yang, Y.H. Zhang, and R.B. Li, Effect of C and Si contents on microstructure and impact toughness in CGHAZ of offshore engineering steel, Metall. Res. Technol., 119(2022), No. 6, art. No. 615. doi: 10.1051/metal/2022087
    [131]
    Y. Zhang, G.H. Shi, R. Sun, K. Guo, C.L. Zhang, and Q.F. Wang, Effect of Si content on the microstructures and the impact properties in the coarse-grained heat-affected zone (CGHAZ) of typical weathering steel, Mater. Sci. Eng. A, 762(2019), art. No. 138082. doi: 10.1016/j.msea.2019.138082
    [132]
    X.Q. Pan, J. Yang, Y.H. Zhang, L.Y. Xu, and R.B. Li, Effects of Al addition on austenite grain growth, submicrometre and nanometre particles in heat-affected zone of steel plates with Mg deoxidation, Ironmaking Steelmaking, 48(2021), No. 4, p. 417. doi: 10.1080/03019233.2020.1801302
    [133]
    X.Q. Pan, J. Yang, Q.D. Zhong, et al., Effects of coarse particles, prior austenite grains, and microstructures on impact toughness in heat-affected zone of Mg deoxidation steel plates without or with Al addition, Ironmaking Steelmaking, 48(2021), No. 8, p. 962. doi: 10.1080/03019233.2020.1848304
    [134]
    D.K. Liu, J. Yang, Y.H. Zhang, and L.Y. Xu, Effect of Mo content on nano-scaled particles, prior austenite grains and impact toughness of CGHAZ in offshore engineering steels, J. Iron Steel Res. Int., 29(2022), No. 5, p. 846. doi: 10.1007/s42243-021-00639-6
    [135]
    J. Moon, S. Kim, H. Jeong, J. Lee, and C. Lee, Influence of Nb addition on the particle coarsening and microstructure evolution in a Ti-containing steel weld HAZ, Mater. Sci. Eng. A, 454-455(2007), p. 648. doi: 10.1016/j.msea.2006.11.125
    [136]
    X.Q. Pan, J. Yang, and Y.H. Zhang, Microstructure evolution in heat-affected zone of shipbuilding steel plates with Mg deoxidation containing different Nb contents, Metall. Mater. Trans. A, 53(2022), No. 4, p. 1512. doi: 10.1007/s11661-022-06617-1
    [137]
    T.T. Li, J. Yang, Y.H. Zhang, Y.L. Chen, and Y.Q. Zhang, Particles, microstructures, and impact toughness of CGHAZ of Ca deoxidation shipbuilding steel plates with different Nb contents, Steel Res. Int., 94(2023), No. 8, art. No. 2300020. doi: 10.1002/srin.202300020
    [138]
    Y.L. Yang, X. Jia, Y.X. Ma, et al., Effect of Nb on microstructure and mechanical properties between base metal and high heat input coarse-grain HAZ in a Ti-deoxidized low carbon high strength steel, J. Mater. Res. Technol., 18(2022), p. 2399. doi: 10.1016/j.jmrt.2022.03.150
    [139]
    C. Wang, J.J. Hao, J. Kang, G. Yuan, R.D.K. Misra, and G.D. Wang, Tailoring the microstructure of coarse-grained HAZ in steel for large heat input welding: Effect of Ti–Mg–Ce–V inclusion/precipitation particles, Metall. Mater. Trans. A, 52(2021), No. 8, p. 3191. doi: 10.1007/s11661-021-06321-6
    [140]
    S.Y. Han, S.Y. Shin, C.H. Seo, et al., Effects of Mo, Cr, and V additions on tensile and charpy impact properties of API X80 pipeline steels, Metall. Mater. Trans. A, 40(2009), No. 8, p. 1851. doi: 10.1007/s11661-009-9884-3
    [141]
    Y. Liu, Y.H. Sun, and H.T. Wu, Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1011. doi: 10.1007/s12613-020-2092-2
    [142]
    S.S. Babu and H.K.D.H. Bhadeshia, Transition from bainite to acicular ferrite in reheated Fe–Cr–C weld deposits, Mater. Sci. Technol., 6(1990), No. 10, p. 1005. doi: 10.1179/026708390790189605
    [143]
    J.C.F. Jorge, L.F.G. Souza, and J.M.A. Rebello, The effect of chromium on the microstructure/toughness relationship of C–Mn weld metal deposits, Mater. Charact., 47(2001), No. 3-4, p. 195. doi: 10.1016/S1044-5803(01)00168-1
    [144]
    G. Huang, X.L. Wan, and K.M. Wu, Effect of Cr content on microstructure and impact toughness in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels, Steel Res. Int., 87(2016), No. 11, p. 1426. doi: 10.1002/srin.201500424
    [145]
    X.Y. Wu, P.C. Xiao, S.J. Wu, et al., Effect of molybdenum on the impact toughness of heat-affected zone in high-strength low-alloy steel, Materials, 14(2021), No. 6, art. No. 1430. doi: 10.3390/ma14061430
    [146]
    G.M. Hua, C.S. Li, X.N. Cheng, et al., First-principles study on influence of molybdenum on acicular ferrite formation on TiC particles in microallyed steels, Solid State Commun., 269(2018), p. 102. doi: 10.1016/j.ssc.2017.10.001
    [147]
    X.Q. Pan, J. Yang, and Y.H. Zhang, Effect of B segregation at prior austenite grain boundaries on microstructures and toughness in the heat-affected zone of Mg-deoxidized shipbuilding steel plates, Steel Res. Int., 93(2022), No. 8, art. No. 2200102. doi: 10.1002/srin.202200102
    [148]
    Y. Chen, D.T. Zhang, Y.C. Liu, H.J. Li, and D.K. Xu, Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels, Mater. Charact., 84(2013), p. 232. doi: 10.1016/j.matchar.2013.08.005
    [149]
    D.K. Liu, J. Yang, and Y.H. Zhang, Effect of boron content on microstructure and impact toughness in CGHAZ of shipbuilding steel plates with Ca deoxidation, Steel Res. Int., 94(2023), No. 3, art. No. 2200278. doi: 10.1002/srin.202200278
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(1388) PDF Downloads(37) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return