Xiangyu Xu, Lu Zhang, Zifei Wang, Qianren Tian, Jianxun Fu,  and Xuemin Wang, Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1849-1857. https://doi.org/10.1007/s12613-023-2757-8
Cite this article as:
Xiangyu Xu, Lu Zhang, Zifei Wang, Qianren Tian, Jianxun Fu,  and Xuemin Wang, Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1849-1857. https://doi.org/10.1007/s12613-023-2757-8
Research Article

Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification

+ Author Affiliations
  • Corresponding author:

    Jianxun Fu    E-mail: fujianxun@shu.edu.cn

  • Received: 30 June 2023Revised: 8 October 2023Accepted: 9 October 2023Available online: 12 October 2023
  • Te treatment is an effective method for modifying sulfide inclusions, and MnTe precipitation has an important effect on thermal brittleness and steel corrosion resistance. In most actual industrial applications of Te treatment, MnTe precipitation is unexpected. The critical precipitation behavior of MnTe inclusions was investigated through scanning electron microscopy, transmission electron microscopy, machine learning, and first-principles calculation. MnTe preferentially precipitated at the container mouth for sphere-like sulfides and at the interface between MnS grain boundaries and steel matrix for rod-like sulfides. The MnS/MnTe interface was semicoherent. A composition transition zone with a rock-salt structure exhibiting periodic changes existed to maintain the semicoherent interface. The critical precipitation behavior of MnTe inclusions in resulfurized steels involved three stages at varying temperatures. First, Mn(S,Te) precipitated during solidification. Second, MnTe with a rock-salt structure precipitated from Mn(S,Te). Third, MnTe with a hexagonal NiAs structure transformed from the rock-salt structure. The solubility of Te in MnS decreased with decreasing temperature. The critical precipitation behavior of MnTe inclusions in resulfurized steels was related to the MnS precipitation temperature. With the increase in MnS precipitation temperature, the critical Te/S weight ratio decreased. In consideration of the cost-effectiveness of Te addition for industrial production, the Te content in resulfurized steels should be controlled in accordance with MnS precipitation temperature and S content.
  • loading
  • [1]
    X.Y. Xu, T.F. Chung, S.H. Hu, et al., Effect of tin microalloying on the microstructure of low-carbon free-machining steels, J. Mater. Res. Technol., 20(2022), p. 1172. doi: 10.1016/j.jmrt.2022.07.153
    [2]
    Q.R. Tian, X.Y. Xu, J. Li, et al., Formation mechanism of band delta-ferrite in 416 stainless steel and its relationship with MnS and M23C6, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2355. doi: 10.1007/s11663-021-02181-y
    [3]
    J.B. Xie, T. Fan, H. Sun, Z.Q. Zeng, and J.X. Fu, Enhancement of impurity, machinability and mechanical properties in Te-treated 0Cr18Ni9 steel, Met. Mater. Int., 27(2021), No. 6, p. 1416. doi: 10.1007/s12540-019-00545-3
    [4]
    Z.Q. Liu, Y. Zhang, W. Shi, and S. Xiang, Layer-by-layer analysis of gradient corrosion behavior of ultrasonic rolling-processed 20CrMnTi steel, Mater. Lett., 334(2023), art. No. 133740. doi: 10.1016/j.matlet.2022.133740
    [5]
    N.F. Liu, X.Y. Xu, Z.F. Wang, et al., Effect of tellurium on sulfide inclusion, microstructure and properties of industrial bars of a medium-carbon microalloyed steel, J. Mater. Res. Technol., 24(2023), p. 2226. doi: 10.1016/j.jmrt.2023.03.136
    [6]
    J.E. Desaigues, C. Lescalier, A. Bomont-Arzur, D. Dudzinski, and O. Bomont, Experimental study of Built-Up Layer formation during machining of high strength free-cutting steel, J. Mater. Process. Technol., 236(2016), p. 204. doi: 10.1016/j.jmatprotec.2016.05.016
    [7]
    M. Wu, W. Fang, R.M. Chen, et al., Mechanical anisotropy and local ductility in transverse tensile deformation in hot rolled steels: The role of MnS inclusions, Mater. Sci. Eng. A, 744(2019), p. 324. doi: 10.1016/j.msea.2018.12.026
    [8]
    P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
    [9]
    Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, and R.D.K. Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 1. doi: 10.1007/s12613-019-1939-x
    [10]
    H.H. Zhang, L.H. Wan, M.J. Long, et al., Quantitative investigation on the evolution of Ti(C x, N1− x) in ultra-high-strength steel slab during TSCR process: Precipitation and redissolution, Metall. Mater. Trans. B, 54(2023), No. 5, p. 2492. doi: 10.1007/s11663-023-02850-0
    [11]
    X.Y. Xu, Q.R. Tian, T. Hu, D.P. Ji, Q. Qian, and J.X. Fu, Tellurium treatment for the modification of sulfide inclusions and corresponding industrial applications in special steels: A review, Steel Res. Int., 94(2023), No. 5, art.No.2200375. doi: 10.1002/srin.202200375
    [12]
    G. Gupta, D.G.C. Robertson, and M.E. Schlesinger, Tellurium thermodynamics in austenitic iron, Can. Metall. Q., 44(2005), No. 3, p. 351. doi: 10.1179/cmq.2005.44.3.351
    [13]
    K. Hoffmann, K.H. Sauer, and H.J. Grabke, Untersuchungen zur löslichkeit, korngrenzensegregation und chemisch-analytischen bestimmung des tellurs im eisen, Steel Res., 59(1988), No. 4, p. 139. doi: 10.1002/srin.198801620
    [14]
    L.C. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M.X. Guo, Effect of surfactant Te on the formation of MnS inclusions in steel, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2447. doi: 10.1007/s11663-017-1050-5
    [15]
    P. Shen, H. Zhang, X.Y. Xu, Q.K. Yang, and J.X. Fu, Study on the high-temperature evolution and formation mechanism of inclusions in Te-treated resulfurized special steel, Steel Res. Int., 92(2021), No. 11, art.No.2100235. doi: 10.1002/srin.202100235
    [16]
    S. Zhang, F. Wang, S.F. Yang, J.H. Liu, and J.S. Li, Sulfide transformation with tellurium treatment for Y15 free-cutting steel, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2284. doi: 10.1007/s11663-019-01627-8
    [17]
    Q. Huang, Y. Ren, Y. Luo, S. Ji, and L.F. Zhang, Deformation of MnS–MnTe inclusions in a sulfur-containing free-cutting steel with tellurium treatment, Metall. Mater. Trans. B, 54(2023), No. 1, p. 370. doi: 10.1007/s11663-022-02698-w
    [18]
    P. Shen, Q.K. Yang, D. Zhang, S.F. Yang, and J.X. Fu, The effect of tellurium on the formation of MnTe-MnS composite inclusions in non-quenched and tempered steel, Metals, 8(2018), No. 8, art. No. 639. doi: 10.3390/met8080639
    [19]
    T. Katoh, S. Abeyama, A. Kimura, and S. Nakamura, A study on resulfurized free-machining steel containing a small amount of tellurium, Denki Seiko, 53(1982), No. 3, p. 195. doi: 10.4262/denkiseiko.53.195
    [20]
    S.F. Yang, Z.C. Che, C. Liu, et al., Mechanism of the dual effect of Te addition on the localised corrosion resistance of 15–5PH stainless steel, Corros. Sci., 212(2023), art. No. 110970. doi: 10.1016/j.corsci.2023.110970
    [21]
    T.Y. Tien, L.H. Van Vlack, and R.J. Martin, The System MnTe–MnS : Progress Report, The University of Michigan, New York, 1967.
    [22]
    P. Shen, L. Zhou, Q.K. Yang, Z.Q. Zeng, K.N. Ai, and J.X. Fu, Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel, Metall. Res. Technol., 117(2020), No. 6, art. No. 615. doi: 10.1051/metal/2020066
    [23]
    X.Y. Xu, Y.T. Li, Z.F. Wang, et al., Tellurium doping in MnS inclusions and corresponding modification effect: Experimental and first-principles study, Metall. Mater. Trans. A, 54(2023), No. 11, p. 4558. doi: 10.1007/s11661-023-07189-4
    [24]
    G. Xu, J.S. He, Z.M. Lü, M. Li, and J.W. Xu, Prediction of mechanical properties for deep drawing steel by deep learning, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 156. doi: 10.1007/s12613-022-2547-8
    [25]
    X.J. Yang, J.H. Jia, Q. Li, et al., Stress-assisted corrosion mechanism study of 3Ni steel based on gradient boosting decision tree machining-learning method, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-023-2661-2
    [26]
    G.F. Pan, F.Y. Wang, C.L. Shang, et al., Advances in machine learning- and artificial intelligence-assisted material design of steels, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1003. doi: 10.1007/s12613-022-2595-0
    [27]
    R.H. Zhang and J. Yang, State of the art in applications of machine learning in steelmaking process modeling, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2055. doi: 10.1007/s12613-023-2646-1
    [28]
    J. Kuang and Z. Long, Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-023-2679-5
    [29]
    Z.C. Xin, J.S. Zhang, Y. Jin, J. Zheng, and Q. Liu, Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 335. doi: 10.1007/s12613-021-2409-9
    [30]
    F.F. Li, A.R. He, Y. Song, et al., Deep learning for predictive mechanical properties of hot-rolled strip in complex manufacturing systems, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1093. doi: 10.1007/s12613-022-2536-y
    [31]
    F. Pedregosa, G. Varoquaux, A. Gramfort, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12(2011), p. 2825.
    [32]
    G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys.: Condens. Matter, 6(1994), No. 40, p. 8245. doi: 10.1088/0953-8984/6/40/015
    [33]
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
    [34]
    P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953. doi: 10.1103/PhysRevB.50.17953
    [35]
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
    [36]
    Q.R. Tian, N.F. Liu, W. Shen, X.Y. Xu, and J.X. Fu, Morphological differences of MnS inclusions in medium-carbon steel with different manganese and sulfur contents, Steel Res. Int., 94(2023), No. 9, art.No. 2300074. doi: 10.1002/srin.202300074
    [37]
    Q.R. Tian, B. Liu, W. Shen, T. Hu, J.X. Fu, and X.Y. Xu, Nucleation, growth, sintering, and densification of sulfide in 1215MS free-cutting steel billet, Steel Res. Int., 94(2023), No. 6, art.No. 2200674. doi: 10.1002/srin.202200674
    [38]
    M. Kuriyama and S. Hosoya, X-ray measurement of scattering factors of manganese and oxygen atoms in manganous oxide, J. Phys. Soc. Jpn., 17(1962), No. 6, p. 1022. doi: 10.1143/JPSJ.17.1022
    [39]
    C.H. Leung and L.H. Van Vlack, Solubility limits in binary (Ca, Mn) chalcogenides, J. Am. Ceram. Soc., 62(1979), No. 11-12, p. 613. doi: 10.1111/j.1151-2916.1979.tb12743.x
    [40]
    C.H. Griffiths, Cubic manganous telluride, J. Mater. Sci., 13(1978), No. 3, p. 513. doi: 10.1007/BF00541800
    [41]
    W.T. Lv, L.C. Yan, X.L. Pang, et al., Study of the stability of α-Fe/MnS interfaces from first principles and experiment, Appl. Surf. Sci., 501(2020), art. No. 144017. doi: 10.1016/j.apsusc.2019.144017
    [42]
    A.J. Panson and W.D. Johnston, The MnTe–MnSe system, J. Inorg. Nucl. Chem., 26(1964), No. 5, p. 701. doi: 10.1016/0022-1902(64)80312-2
    [43]
    W.D. Johnston and D.E. Sestrich, The MnTe–GeTe phase diagram, J. Inorg. Nucl. Chem., 19(1961), No. 3-4, p. 229. doi: 10.1016/0022-1902(61)80111-5
    [44]
    S.S. Abdul Noor, Magnetic phase transition in Mn0.5Te0.5– xSb x, J. Appl. Phys., 61(1987), No. 8, p. 3549. doi: 10.1063/1.338720
    [45]
    S. Furuseth, A. Kjekshus, R.J.V. Niklasson, J. Brunvoll, and M. Hinton, On the properties of alpha-MnS and MnS2, Acta Chem. Scand., 19(1965), p. 1405. doi: 10.3891/acta.chem.scand.19-1405
    [46]
    W. Shen, Z.W. Li, Q.R. Tian, and J.X. Fu, Modification of sulfide distribution in 46MnVS non-quenched and tempered steel by tellurium, Steelmaking, 39(2023), No. 2, p. 56.
    [47]
    Z.Z. Liu, J. Wei, and K.K. Cai, A coupled mathematical model of microsegregation and inclusion precipitation during solidification of silicon steel, ISIJ Int., 42(2002), No. 9, p. 958. doi: 10.2355/isijinternational.42.958
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(555) PDF Downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return