Cite this article as: |
Xin Yu, Congcong Li, Jian Zhang, Lili Zhao, Jinbo Pang, and Longhua Ding, Recent progress on Sn3O4 nanomaterials for photocatalytic applications, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 231-244. https://doi.org/10.1007/s12613-023-2761-z |
Xin Yu E-mail: ifc_yux@ujn.edu.cn
Longhua Ding E-mail: bio_dinglh@ujn.edu.cn
[1] |
X. Yu, X. Jin, X.Y. Chen, et al., A microorganism bred TiO2/Au/TiO2 heterostructure for whispering gallery mode resonance assisted plasmonic photocatalysis, ACS Nano, 14(2020), No. 10, p. 13876. doi: 10.1021/acsnano.0c06278
|
[2] |
Y.J. Fu, K.J. Zhang, Y. Zhang, Y.Q. Cong, and Q. Wang, Fabrication of visible-light-active MR/NH2–MIL–125(Ti) homojunction with boosted photocatalytic performance, Chem. Eng. J., 412(2021), art. No. 128722. doi: 10.1016/j.cej.2021.128722
|
[3] |
Y.J. Fu, M. Tan, Z.L. Guo, et al., Fabrication of wide-spectra-responsive NA/NH2–MIL–125(Ti) with boosted activity for Cr(VI) reduction and antibacterial effects, Chem. Eng. J., 452(2023), art. No. 139417. doi: 10.1016/j.cej.2022.139417
|
[4] |
Q. Yang, M.L. Luo, K.W. Liu, H.M. Cao, and H.J. Yan, Covalent organic frameworks for photocatalytic applications, Appl. Catal. B, 276(2020), art. No. 119174. doi: 10.1016/j.apcatb.2020.119174
|
[5] |
A. Mohammad, M.E. Khan, M.H. Cho, and T. Yoon, Adsorption promoted visible-light-induced photocatalytic degradation of antibiotic tetracycline by tin oxide/cerium oxide nanocomposite, Appl. Surf. Sci., 565(2021), art. No. 150337. doi: 10.1016/j.apsusc.2021.150337
|
[6] |
M. Honarmand, M. Golmohammadi, and A. Naeimi, Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes, Adv. Powder Technol., 30(2019), No. 8, p. 1551. doi: 10.1016/j.apt.2019.04.033
|
[7] |
I. Fatimah, D. Rubiyanto, I. Sahroni, R.S. Putra, R. Nurillahi, and J. Nugraha, Physicochemical characteristics and photocatalytic performance of Tin oxide/montmorillonite nanocomposites at various Sn/montmorillonite molar to mass ratios, Appl. Clay Sci., 193(2020), art. No. 105671. doi: 10.1016/j.clay.2020.105671
|
[8] |
K. Balakrishnan, V. Veerapandy, H. Fjellvåg, and P. Vajeeston, First-principles exploration into the physical and chemical properties of certain newly identified SnO2 polymorphs, ACS Omega, 7(2022), No. 12, p. 10382. doi: 10.1021/acsomega.1c07063
|
[9] |
Y.Q. Hu, J. Hwang, Y. Lee, et al., First principles calculations of intrinsic mobilities in tin-based oxide semiconductors SnO, SnO2, and Ta2SnO6, J. Appl. Phys., 126(2019), No. 18, art. No. 185701. doi: 10.1063/1.5109265
|
[10] |
C. Wang, J.C. Zhao, X.M. Wang, et al., Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts, Appl. Catal. B, 39(2002), No. 3, p. 269. doi: 10.1016/S0926-3373(02)00115-7
|
[11] |
T. Lu, Y.P. Zhang, H.B. Li, L.K. Pan, Y.L. Li, and Z. Sun, Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors, Electrochim. Acta, 55(2010), No. 13, p. 4170. doi: 10.1016/j.electacta.2010.02.095
|
[12] |
A. Seko, A. Togo, F. Oba, and I. Tanaka, Structure and stability of a homologous series of tin oxides, Phys. Rev. Lett., 100(2008), No. 4, art. No. 045702. doi: 10.1103/PhysRevLett.100.045702
|
[13] |
S. Das and V. Jayaraman, SnO2: A comprehensive review on structures and gas sensors, Prog. Mater. Sci., 66(2014), p. 112. doi: 10.1016/j.pmatsci.2014.06.003
|
[14] |
C.Y. Sun, J.K. Yang, M. Xu, et al., Recent intensification strategies of SnO2-based photocatalysts: A review, Chem. Eng. J., 427(2022), art. No. 131564. doi: 10.1016/j.cej.2021.131564
|
[15] |
M.H. Chen, Z.C. Huang, G.T. Wu, G.M. Zhu, J.K. You, and Z.G. Lin, Synthesis and characterization of SnO–carbon nanotube composite as anode material for lithium-ion batteries, Mater. Res. Bull., 38(2003), No. 5, p. 831. doi: 10.1016/S0025-5408(03)00063-1
|
[16] |
Y. Ogo, H. Hiramatsu, K. Nomura, et al., P-channel thin-film transistor using p-type oxide semiconductor, SnO, Appl. Phys. Lett., 93(2008), No. 3, art. No. 032113. doi: 10.1063/1.2964197
|
[17] |
R.Q. Yang, X. Yu, and H. Liu, Scientific study of photocatalytic material based on Sn3O4, Chem. J. Chin. Univ., 42(2021), No. 5, p. 1340.
|
[18] |
L.P. Zhu, H. Lu, D. Hao, et al., Three-dimensional lupinus-like TiO2 nanorod@Sn3O4 nanosheet hierarchical heterostructured arrays as photoanode for enhanced photoelectrochemical performance, ACS Appl. Mater. Interfaces, 9(2017), No. 44, p. 38537. doi: 10.1021/acsami.7b11872
|
[19] |
Q. Bai, J.C. Zhang, Y.X. Yu, et al., Piezoelectric activatable nanozyme-based skin patch for rapid wound disinfection, ACS Appl. Mater. Interfaces, 14(2022), No. 23, p. 26455. doi: 10.1021/acsami.2c05114
|
[20] |
Z.R. Dai, J.J. Lian, Y.S. Sun, et al., Fabrication of g-C3N4/Sn3O4/Ni electrode for highly efficient photoelectrocatalytic reduction of U(VI), Chem. Eng. J., 433(2022), art. No. 133766. doi: 10.1016/j.cej.2021.133766
|
[21] |
T. Tanabe, K. Nakamori, T. Tanikawa, Y. Matsubara, and F. Matsumoto, Ultrathin nanosheet Sn3O4 for highly effective hydrogen evolution under visible light, J. Photochem. Photobiol. A, 420(2021), art. No. 113486. doi: 10.1016/j.jphotochem.2021.113486
|
[22] |
H. Song, S.Y. Son, S.K. Kim, and G.Y. Jung, A facile synthesis of hierarchical Sn3O4 nanostructures in an acidic aqueous solution and their strong visible-light-driven photocatalytic activity, Nano Res., 8(2015), No. 11, p. 3553. doi: 10.1007/s12274-015-0855-2
|
[23] |
J.J. Wang, N. Umezawa, and H. Hosono, Mixed valence tin oxides as novel van der Waals materials: Theoretical predictions and potential applications, Adv. Energy Mater., 6(2016), No. 1, art. No. 1501190. doi: 10.1002/aenm.201501190
|
[24] |
M. Manikandan, T. Tanabe, P. Li, et al., Photocatalytic water splitting under visible light by mixed-valence Sn3O4, ACS Appl. Mater. Interfaces, 6(2014), No. 6, p. 3790. doi: 10.1021/am500157u
|
[25] |
Y.S. Liu, A. Yamaguchi, Y. Yang, et al., Synthesis and characterization of the orthorhombic Sn3O4 polymorph, Angew. Chem. Int. Ed, 62(2023), No. 17, art. No. e202300640. doi: 10.1002/anie.202300640
|
[26] |
C. Jose Damaschio, O.M. Berengue, D.G. Stroppa, et al., Sn3O4 single crystal nanobelts grown by carbothermal reduction process, J. Cryst. Growth, 312(2010), No. 20, p. 2881. doi: 10.1016/j.jcrysgro.2010.07.022
|
[27] |
L.N. Zhang, X.Y. Liu, X. Zhang, et al., Sulfur-doped Sn3O4 nanosheets for improved photocatalytic performance, J. Alloys Compd., 961(2023), art. No. 170904. doi: 10.1016/j.jallcom.2023.170904
|
[28] |
N. Yuan, X.L. Zhang, B.W. Li, T.X. Chen, and X. Yang, Energy-efficient MIL–53(Fe)/Sn3O4 nanosheet photocatalysts for visible-light degradation of toxic organics in wastewater, ACS Appl. Nano Mater., 6(2023), No. 11, p. 9159. doi: 10.1021/acsanm.3c00400
|
[29] |
R.Q. Yang, G.X. Song, L.W. Wang, et al., Full solar-spectrum-driven antibacterial therapy over hierarchical Sn3O4/PDINH with enhanced photocatalytic activity, Small, 17(2021), No. 39, art. No. e2102744. doi: 10.1002/smll.202102744
|
[30] |
X. Yu, Z.H. Zhao, D.H. Sun, et al., Microwave-assisted hydrothermal synthesis of Sn3O4 nanosheet/rGO planar heterostructure for efficient photocatalytic hydrogen generation, Appl. Catal. B, 227(2018), p. 470. doi: 10.1016/j.apcatb.2018.01.055
|
[31] |
X. Yu, J. Zhang, Z.H. Zhao, et al., NiO–TiO2 p–n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting, Nano Energy, 16(2015), p. 207. doi: 10.1016/j.nanoen.2015.06.028
|
[32] |
X. Yu, X. Han, Z.H. Zhao, et al., Hierarchical TiO2 nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: A highly efficient photoelectrocatalytic device entirely based on renewable energy, Nano Energy, 11(2015), p. 19. doi: 10.1016/j.nanoen.2014.09.024
|
[33] |
X. Yu, L.F. Wang, J. Zhang, et al., Hierarchical hybrid nanostructures of Sn3O4 on N doped TiO2 nanotubes with enhanced photocatalytic performance, J. Mater. Chem. A, 3(2015), No. 37, p. 19129. doi: 10.1039/C5TA05023E
|
[34] |
X. Yu, N. Ren, J.C. Qiu, D.H. Sun, L.L. Li, and H. Liu, Killing two birds with one stone: To eliminate the toxicity and enhance the photocatalytic property of CdS nanobelts by assembling ultrafine TiO2 nanowires on them, Sol. Energy Mater. Sol. Cells, 183(2018), p. 41. doi: 10.1016/j.solmat.2018.04.003
|
[35] |
X. Yu, Z.H. Zhao, D.H. Sun, et al., TiO2/TiN core/shell nanobelts for efficient solar hydrogen generation, Chem. Commun., 54(2018), No. 47, p. 6056. doi: 10.1039/C8CC02651C
|
[36] |
Y.C. Ji, R.Q. Yang, L.W. Wang, et al., Visible light active and noble metal free Nb4N5/TiO2 nanobelt surface heterostructure for plasmonic enhanced solar water splitting, Chem. Eng. J., 402(2020), art. No. 126226. doi: 10.1016/j.cej.2020.126226
|
[37] |
H.X. Liu, M.Y. Teng, X.G. Wei, et al., Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 495. doi: 10.1007/s12613-020-2033-0
|
[38] |
.M. Berengue, R.A. Simon, A.J. Chiquito, et al., Semiconducting Sn3O4 nanobelts: Growth and electronic structure, J. Appl. Phys., 107(2010), No. 3, art. No. 033717.
|
[39] |
P. Mone, S. Mardikar, and S. Balgude, Morphology-controlled synthesis of Sn3O4 nanowires for enhanced solar-light driven photocatalytic H2 production, Nano Struct. Nano Objects, 24(2020), art. No. 100615. doi: 10.1016/j.nanoso.2020.100615
|
[40] |
Y.H. He, D.Z. Li, J. Chen, et al., Sn3O4: A novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light, RSC Adv., 4(2014), No. 3, p. 1266. doi: 10.1039/C3RA45743E
|
[41] |
S. Balgude, Y. Sethi, B. Kale, D. Amalnerkar, and P. Adhyapak, Sn3O4 microballs as highly efficient photocatalyst for hydrogen generation and degradation of phenol under solar light irradiation, Mater. Chem. Phys., 221(2019), p. 493. doi: 10.1016/j.matchemphys.2018.08.032
|
[42] |
X.H. Ma, J.L. Shen, D.X. Hu, et al., Preparation of three-dimensional Ce-doped Sn3O4 hierarchical microsphere and its application on formaldehyde gas sensor, J. Alloys Compd., 726(2017), p. 1092. doi: 10.1016/j.jallcom.2017.08.079
|
[43] |
S. Balgude, Y. Sethi, A. Gaikwad, B. Kale, D. Amalnerkar, and P. Adhyapak, Unique N doped Sn3O4 nanosheets as an efficient and stable photocatalyst for hydrogen generation under sunlight, Nanoscale, 12(2020), No. 15, p. 8502. doi: 10.1039/C9NR10439A
|
[44] |
D.B. Zeng, C.L. Yu, Q.Z. Fan, et al., Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(VI) and organic pollutants, Chem. Eng. J., 391(2020), art. No. 123607. doi: 10.1016/j.cej.2019.123607
|
[45] |
C.L. Yu, D.B. Zeng, Q.Z. Fan, et al., The distinct role of boron doping in Sn3O4 microspheres for synergistic removal of phenols and Cr(VI) in simulated wastewater, Environ. Sci. Nano, 7(2020), No. 1, p. 286. doi: 10.1039/C9EN00899C
|
[46] |
L. Wang, Y. Li, W.J. Yue, S. Gao, C.W. Zhang, and Z.X. Chen, High-performance formaldehyde gas sensor based on Cu-doped Sn3O4 hierarchical nanoflowers, IEEE Sens. J., 20(2020), No. 13, p. 6945. doi: 10.1109/JSEN.2020.2977972
|
[47] |
R.Q. Yang, Y.C. Ji, L.W. Wang, et al., Crystalline Ni-doped Sn3O4 nanosheets for photocatalytic H2 production, ACS Appl. Nano Mater., 3(2020), No. 9, p. 9268. doi: 10.1021/acsanm.0c01886
|
[48] |
Z.R. Liu, L.W. Wang, X. Yu, et al., Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p–n heterojunction, Adv. Funct. Mater., 29(2019), No. 41, art. No. 1807279. doi: 10.1002/adfm.201807279
|
[49] |
X. Yu, S. Wang, X.D. Zhang, et al., Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing, Nano Energy, 46(2018), p. 29. doi: 10.1016/j.nanoen.2018.01.033
|
[50] |
J.S. Yuan, Y. Zhang, X.Y. Zhang, J.J. Zhang, and S.G. Zhang, N-doped graphene quantum dots-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotics photodegradation and H2 production, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 165.
|
[51] |
Y. Wen, D.D. Wang, H.J. Li, et al., Enhanced photocatalytic hydrogen evolution of 2D/2D N-Sn3O4/g-C3N4 S-scheme heterojunction under visible light irradiation, Appl. Surf. Sci., 567(2021), art. No. 150903. doi: 10.1016/j.apsusc.2021.150903
|
[52] |
X. Jiang, M.T. Wang, B.N. Luo, et al., Magnetically recoverable flower-like Sn3O4/SnFe2O4 as a type-II heterojunction photocatalyst for efficient degradation of ciprofloxacin, J. Alloys Compd., 926(2022), art. No. 166878. doi: 10.1016/j.jallcom.2022.166878
|
[53] |
R.Q. Yang, N. Liang, X.Y. Chen, et al., Sn/Sn3O4− x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 150. doi: 10.1007/s12613-020-2131-z
|
[54] |
H.H. Wang, W.X. Liu, J. Ma, et al., Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
|
[55] |
F.C. Wen, S.R.G.G. Li, Y. Chen, et al., Corrugated rGO-supported Pd composite on carbon paper for efficient cathode of Mg–H2O2 semi-fuel cell, Rare Met., 41(2022), No. 8, p. 2655. doi: 10.1007/s12598-022-01964-9
|
[56] |
X. Yu, Z.H. Zhao, N. Ren, et al., Top or bottom, assembling modules determine the photocatalytic property of the sheetlike nanostructured hybrid photocatalyst composed with Sn3O4 and rGO (GQD), ACS Sustainable Chem. Eng., 6(2018), No. 9, p. 11775. doi: 10.1021/acssuschemeng.8b02030
|
[57] |
X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
|
[58] |
H.M. Shao, X.Y. Shen, X.T. Li, et al., Growth mechanism and photocatalytic evaluation of flower-like ZnO micro-structures prepared with SDBS assistance, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 729. doi: 10.1007/s12613-020-2138-5
|
[59] |
R.Q. Yang, Y.C. Ji, J. Zhang, et al., Efficiently degradation of polyacrylamide pollution using a full spectrum Sn3O4 nanosheet/Ni foam heterostructure photoelectrocatalyst, Catal. Today, 335(2019), p. 520. doi: 10.1016/j.cattod.2019.02.019
|
[60] |
Y.Q. Han, M.M. Wei, S.Y Qu, et al., Ag@AgCl quantum dots embedded on Sn3O4 nanosheets towards synergistic 3D flower-like heterostructured microspheres for efficient visible-lkght photocatalysis, Ceram. Int., 46 (2020), No. 15, p. 24060. doi: 10.1016/j.ceramint.2020.06.184
|
[61] |
L. Chen, S. Yue, J. Wang, et al., Overall water splitting on surface-polarized Sn3O4 through weakening the trap of Sn(II) to holes, Appl. Catal. B, 299(2021), art. No. 120689. doi: 10.1016/j.apcatb.2021.120689
|
[62] |
L. Xu, W.Q. Chen, S.Q. Ke, et al., Construction of heterojunction Bi/Bi5O7I/Sn3O4 for efficient noble-metal-free Z-scheme photocatalytic H2 evolution, Chem. Eng. J., 382(2020), art. No. 122810. doi: 10.1016/j.cej.2019.122810
|
[63] |
L.Q. Yang, M.F. Lv, Y. Song, et al., Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production, Appl. Catal. B, 279(2020), art. No. 119341. doi: 10.1016/j.apcatb.2020.119341
|
[64] |
R.Q. Yang, Y.C. Ji, Q. Li, et al., Ultrafine Si nanowires/Sn3O4 nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance, Appl. Catal. B, 256(2019), art. No. 117798. doi: 10.1016/j.apcatb.2019.117798
|
[65] |
Z. Chen, M.R. Gao, N.Q. Duan, et al., Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products, Appl. Catal. B, 277(2020), art. No. 119252. doi: 10.1016/j.apcatb.2020.119252
|
[66] |
Y.S. Liu, A. Yamaguchi, Y. Yang, et al., Visible-light-induced CO2 reduction by mixed-valence tin oxide, ACS Appl. Energy Mater., 4(2021), No. 12, p. 13415. doi: 10.1021/acsaem.1c02896
|
[67] |
L.W. Wang, F.E. Gao, A.Z. Wang, et al., Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application, Adv. Mater., 32(2020), No. 48, art. No. e2005423. doi: 10.1002/adma.202005423
|
[68] |
L.W. Wang, X.W. Tang, Z.W. Yang, et al., Regulation of functional groups enable the metal-free PDINH/GO advisable antibacterial photocatalytic therapy, Chem. Eng. J., 451(2023), art. No. 139007. doi: 10.1016/j.cej.2022.139007
|
[69] |
L.W. Wang, Z.W. Yang, G.X. Song, et al., Construction of S–N–C bond for boosting bacteria-killing by synergistic effect of photocatalysis and nanozyme, Appl. Catal. B, 325(2023), art. No. 122345. doi: 10.1016/j.apcatb.2022.122345
|
[70] |
L.W. Wang, X. Zhang, X. Yu, et al., An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity, Adv. Mater., 31(2019), No. 33, art. No. 1901965. doi: 10.1002/adma.201901965
|
[71] |
L.W. Wang, L. Liu, Z. You, et al., Surface amorphization oxygen vacancy-rich porous Sn3O x nanosheets for boosted photoelectrocatalytic bacterial inactivation, Rare Met., 42(2023), No. 5, p. 1508. doi: 10.1007/s12598-022-02208-6
|
[72] |
S. Li, F. Qin, Q. Peng, et al., Van der waals mixed valence tin oxides for perovskite solar cells as UV-stable electron transport materials, Nano Lett., 20(2020), No. 11, p. 8178. doi: 10.1021/acs.nanolett.0c03286
|
[73] |
S. Li, J.L. Liu, S. Liu, et al., Yttrium-doped Sn3O4 two-dimensional electron transport material for perovskite solar cells with efficiency over 23%, EcoMat, 4(2022), No. 4, art. No. e12202. doi: 10.1002/eom2.12202
|
[74] |
J. Wang, Q. Xu, W.W. Xia, et al., High sensitive visible light photoelectrochemical sensor based on in situ prepared flexible Sn3O4 nanosheets and molecularly imprinted polymers, Sens. Actuators B, 271(2018), p. 215. doi: 10.1016/j.snb.2018.05.098
|
[75] |
W.W. Xia, H.Y. Qian, X.H. Zeng, J. Dong, J. Wang, and Q. Xu, Visible-light self-powered photodetector and recoverable photocatalyst fabricated from vertically aligned Sn3O4 nanoflakes on carbon paper, J. Phys. Chem. C, 121(2017), No. 35, p. 19036. doi: 10.1021/acs.jpcc.7b05520
|
[76] |
R. Xu, Y. Du, D.Q. Leng, et al., Antigen down format photoelectrochemical analysis supported by fullerene functionalized Sn3O4, Chem. Commun., 56(2020), No. 54, p. 7455. doi: 10.1039/D0CC02933E
|