Cite this article as: |
Baosheng Liu, Jiali Wei, Shaohua Zhang, Yuezhong Zhang, Pengpeng Wu, Daqing Fang, and Guorui Ma, Microstructures, corrosion behavior and mechanical properties of as-cast Mg–6Zn–2X(Fe/Cu/Ni) alloys for plugging tool applications, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 697-711. https://doi.org/10.1007/s12613-023-2775-6 |
Baosheng Liu E-mail: liubaosheng@tyust.edu.cn
[1] |
Z.Y. Xu, G. Agrawal, and B.J. Salinas, Smart nanostructured materials deliver high reliability completion tools for gas shale fracturing, [in] the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 2011, art. No. SPE-146586-MS.
|
[2] |
D. Themig, New technologies enhance efficiency of horizontal, multistage fracturing, J. Petrol. Technol., 63(2011), No. 4, p. 26. doi: 10.2118/0411-0026-JPT
|
[3] |
D.R. Watson, D.G. Durst, T. Harris, and J.D. Contreras, One-trip multistage completion technology for unconventional gas formations, [in] the SPE Unconventional Resources Conference /Gas Technology Symposium, Calgary, Alberta, 2008, art. No. SPE-114973-MS.
|
[4] |
C. Franco, R. Solares, H. Marri, and H. Hussain, The use of stagefrac new technology to complete and stimulate horizontal wells: Field case, [in] the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 2008, art. No. SPE-120806-MS.
|
[5] |
N.J. Jin and Q.J. Zeng, Dissolvable tools in multistage stimulation, [in] the SPE /IATMI Asia Pacific Oil & Gas Conference and Exhibition, Jakarta, Indonesia, 2017, art. No. SPE-186184-MS.
|
[6] |
D.H. Xiao, Z.W. Geng, L. Chen, et al., Effects of alloying elements on microstructure and properties of magnesium alloys for tripling ball, Metall. Mater. Trans. A, 46(2015), No. 10, p. 4793. doi: 10.1007/s11661-015-3053-7
|
[7] |
D. Kumar, E.D. Hernaez, J.S. Sanchez, and Z.Y. Xu, Temporary coating for dissolving frac-balls used in multi-stage fracturing systems, [in] the Offshore Technology Conference, Houston, Texas, 2018, art. No. OTC-28862-MS.
|
[8] |
W.X. Li, Magnesium and Magnesium Alloys, Central South University Press, Changsha, 2005, p. 501.
|
[9] |
H. Xie, G.H. Wu, X.L. Zhang, et al., Microstructural evolution and mechanical performance of cast Mg–3Nd–0.2Zn–0.5Zr alloy with Y additions, Trans. Nonferrous Met. Soc. China, 32(2022), No. 10, p. 3222. doi: 10.1016/S1003-6326(22)66015-1
|
[10] |
Z.W. Geng, D.H. Xiao, and L. Chen, Microstructure, mechanical properties, and corrosion behavior of degradable Mg–Al–Cu–Zn–Gd alloys, J. Alloys Compd., 686(2016), p. 145. doi: 10.1016/j.jallcom.2016.05.288
|
[11] |
H.C. Chen, T.C. Xie, Q. Liu, et al., Mechanism and prediction of aging time related thermal conductivity evolution of Mg–Zn alloys, J. Alloys Compd., 930(2023), art. No. 167392. doi: 10.1016/j.jallcom.2022.167392
|
[12] |
M. Yin, J.L. Sun, T.Y. Bao, et al., Research progress in effect of alloying elements on corrosion resistance of magnesium alloys, J. Mater. Eng., 49(2021), No. 12, p. 28. doi: 10.11868/j.issn.1001-4381.2021.000289
|
[13] |
D. Bairagi, P. Duley, M. Paliwal, and S. Mandal, Influence of second phase precipitates on mechanical and in-vitro corrosion behaviour of Mg–4Zn–0.5Ca–0.8Mn alloy in optimum homogenized conditions, J. Magnes. Alloys, 11(2023), No. 4, p. 1343. doi: 10.1016/j.jma.2022.11.011
|
[14] |
L. Chen, Z. Wu, D.H. Xiao, Z.W. Geng, and P.F. Zhou, Effects of copper on the microstructure and properties of Mg–17Al–3Zn alloys, Mater. Corros., 66(2015), No. 10, p. 1159. doi: 10.1002/maco.201408090
|
[15] |
H. Pan, F. Pan, X. Wang, et al., High conductivity and high strength Mg–Zn–Cu alloy, Mater. Sci. Technol., 30(2014), No. 7, p. 759. doi: 10.1179/1743284713Y.0000000400
|
[16] |
H.Y. Niu, K.K. Deng, K.B. Nie, F.F. Cao, X.C. Zhang, and W.G. Li, Microstructure, mechanical properties and corrosion properties of Mg–4Zn– xNi alloys for degradable fracturing ball applications, J. Alloys Compd., 787(2019), p. 1290. doi: 10.1016/j.jallcom.2019.02.089
|
[17] |
H.R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, et al., Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications, Mater. Corros., 65(2014), No. 12, p. 1178. doi: 10.1002/maco.201307588
|
[18] |
B.S. Liu, Y.F. Kuang, D.Q. Fang, Y.S. Chai, and Y.Z. Zhang, Microstructure and properties of hot extruded Mg–3Zn–Y– xCu ( x = 0, 1, 3, 5) alloys, Int. J. Mater. Res., 108(2017), No. 4, p. 262. doi: 10.3139/146.111476
|
[19] |
Y.Z. Zhang, X.Y. Wang, Y.F. Kuang, B.S. Liu, K.W. Zhang, and D.Q. Fang, Enhanced mechanical properties and degradation rate of Mg–3Zn–1Y based alloy by Cu addition for degradable fracturing ball applications, Mater. Lett., 195(2017), p. 194. doi: 10.1016/j.matlet.2017.02.024
|
[20] |
C.J. Boehlert and K. Knittel, The microstructure, tensile properties, and creep behavior of Mg–Zn alloys containing 0–4.4wt.% Zn, Mater. Sci. Eng. A, 417(2006), No. 1-2, p. 315. doi: 10.1016/j.msea.2005.11.006
|
[21] |
W.T. Liu, B.S. Liu, S.H. Zhang, et al., Microstructure and mechanical properties of extruded Mg–6Al–2X (X = Cu/Ni/Fe) alloy used degradable bridge plugs, Adv. Compos. Hybrid Mater., 6(2023), No. 5, art. No. 181. doi: 10.1007/s42114-023-00753-x
|
[22] |
S.Y. Zhong, D.F. Zhang, Y.Q. Wang, et al., Microstructures, mechanical properties and degradability of Mg–2Gd–0.5(Cu/Ni) alloys: A comparison study, J. Mater. Sci. Technol., 128(2022), p. 44. doi: 10.1016/j.jmst.2022.03.027
|
[23] |
Z.M. Shi and A. Atrens, An innovative specimen configuration for the study of Mg corrosion, Corros. Sci., 53(2011), No. 1, p. 226. doi: 10.1016/j.corsci.2010.09.016
|
[24] |
Y. Dai, X.H. Chen, T. Yan, et al., Improved corrosion resistance in AZ61 magnesium alloys induced by impurity reduction, Acta Metall. Sin. Engl. Lett., 33(2020), No. 2, p. 225. doi: 10.1007/s40195-019-00914-2
|
[25] |
K. Gusieva, C.H.J. Davies, J.R. Scully, and N. Birbilis, Corrosion of magnesium alloys: The role of alloying, Int. Mater. Rev., 60(2015), No. 3, p. 169. doi: 10.1179/1743280414Y.0000000046
|
[26] |
M. Lotfpour, M. Emamy, C. Dehghanian, and K. Tavighi, Influence of Cu addition on the structure, mechanical and corrosion properties of cast Mg–2%Zn alloy, J. Mater. Eng. Perform., 26(2017), No. 5, p. 2136. doi: 10.1007/s11665-017-2672-0
|
[27] |
M. Lotfpour, C. Dehghanian, M. Emamy, et al., In- vitro corrosion behavior of the cast and extruded biodegradable Mg–Zn–Cu alloys in simulated body fluid (SBF), J. Magnes. Alloys, 9(2021), No. 6, p. 2078. doi: 10.1016/j.jma.2021.01.002
|
[28] |
P. Wan, X.M. Fan, S.Y. Hu, and H.Y. Wen, Harmful Effect of Fe on Properties of Magnesium Alloy and Neutr alizing Methods, Foundry Equip. Technol. 1(2008), No. 1, p. 11.
|
[29] |
D.D. Gu, J. Peng, J.W. Wang, Z.T. Liu, and F.S. Pan, Effect of Mn modification on the corrosion susceptibility of Mg–Mn alloys by magnesium scrap, Acta Metall. Sin. Engl. Lett., 34(2021), No. 1, p. 1. doi: 10.1007/s40195-020-01058-4
|
[30] |
M. Esmaily, J.E. Svensson, S. Fajardo, et al., Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 89(2017), p. 92. doi: 10.1016/j.pmatsci.2017.04.011
|
[31] |
H.R. Bakhsheshi-Rad, E. Hamzah, M. Medraj, et al., Effect of heat treatment on the microstructure and corrosion behaviour of Mg–Zn alloys, Mater. Corros., 65(2014), No. 10, p. 999. doi: 10.1002/maco.201307492
|
[32] |
G.L. Song and A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater., 1(1999), No. 1, p. 11. doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
|
[33] |
X.H. Shao, Z.Q. Yang, and X.L. Ma, Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure, Acta Mater., 58(2010), No. 14, p. 4760. doi: 10.1016/j.actamat.2010.05.012
|
[34] |
C.L. Zhang, F. Zhang, L. Song, R.C. Zeng, S.Q. Li, and E.H. Han, Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg–Li–Ca alloy, J. Alloys Compd., 728(2017), p. 815. doi: 10.1016/j.jallcom.2017.08.159
|
[35] |
Y. Yan, H.W. Cao, Y.J. Kang, et al., Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg–Zn alloys produced by powder metallurgy, J. Alloys Compd., 693(2017), p. 1277. doi: 10.1016/j.jallcom.2016.10.017
|
[36] |
P. Duley, D. Bairagi, L.R. Bairi, T.K. Bandyopadhyay, and S. Mandal, Effect of microstructural evolution and texture change on the in-vitro bio-corrosion behaviour of hard-plate hot forged Mg–4Zn–0.5Ca–0.16Mn (wt%) alloy, Corros. Sci., 192(2021), art. No. 109860. doi: 10.1016/j.corsci.2021.109860
|
[37] |
Y. Wang, M. Wei, J.C. Gao, J.Z. Hu, and Y. Zhang, Corrosion process of pure magnesium in simulated body fluid, Mater. Lett., 62(2008), No. 14, p. 2181. doi: 10.1016/j.matlet.2007.11.045
|
[38] |
M.E. Orazem, I. Frateur, B. Tribollet, et al., Dielectric properties of materials showing constant-phase-element (CPE) impedance response, J. Electrochem. Soc., 160(2013), No. 6, p. C215. doi: 10.1149/2.033306jes
|
[39] |
G.L. Song, A. Atrens, X.L. Wu, and B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corros. Sci., 40(1998), No. 10, p. 1769. doi: 10.1016/S0010-938X(98)00078-X
|
[40] |
P.R. Cha, H.S. Han, G.F. Yang, et al., Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases, Sci. Rep., 3(2013), art. No. 2367. doi: 10.1038/srep02367
|
[41] |
Y. Zhang, X.H. Feng, Q.Y. Huang, et al., The corrosion characteristics and mechanism of directionally solidified Mg–3Zn– xCa alloys, J. Magnes. Alloys, 11(2023), No. 10, p. 3673. doi: 10.1016/j.jma.2022.02.010
|
[42] |
M.S. Song, R.C. Zeng, Y.F. Ding, et al., Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review, J. Mater. Sci. Technol., 35(2019), No. 4, p. 535. doi: 10.1016/j.jmst.2018.10.008
|
[43] |
H.B. Yao, Y. Li, and A.T.S. Wee, An XPS investigation of the oxidation/corrosion of melt-spun Mg, Appl. Surf. Sci., 158(2000), No. 1-2, p. 112. doi: 10.1016/S0169-4332(99)00593-0
|
[44] |
J.C. Li, Y.X. Huang, F.F. Wang, X.C. Meng, L. Wan, and Z.B. Dong, Enhanced strength and ductility of friction-stir-processed Mg–6Zn alloys via Y and Zr co-alloying, Mater. Sci. Eng. A, 773(2020), art. No. 138877. doi: 10.1016/j.msea.2019.138877
|
[45] |
W. Fu, R.H. Wang, K. Wu, et al., The influences of multiscale second-phase particles on strength and ductility of cast Mg alloys, J. Mater. Sci., 54(2019), No. 3, p. 2628. doi: 10.1007/s10853-018-2980-2
|
[46] |
A. Bahmani, S. Arthanari, and K.S. Shin, Formulation of corrosion rate of magnesium alloys using microstructural parameters, J. Magnes. Alloys, 8(2020), No. 1, p. 134. doi: 10.1016/j.jma.2019.12.001
|
[47] |
M. Liu, P. Schmutz, P.J. Uggowitzer, G.L. Song, and A. Atrens, The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys, Corros. Sci., 52(2010), No. 11, p. 3687. doi: 10.1016/j.corsci.2010.07.019
|
[48] |
H. Pan, K. Pang, F.Z. Cui, et al., Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg–Zn–Mn alloy in Hanks’ solution, Corros. Sci., 157(2019), p. 420. doi: 10.1016/j.corsci.2019.06.022
|
[49] |
Y.Q. Wang, D.F. Zhang, S.Y. Zhong, et al., Effect of minor Ni addition on the microstructure, mechanical properties and corrosion behavior of Mg–2Gd alloy, J. Mater. Res. Technol., 20(2022), p. 3735. doi: 10.1016/j.jmrt.2022.08.051
|
[50] |
H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, Hall-Petch relationship in Mg alloys: A review, J. Mater. Sci. Technol., 34(2018), No. 2, p. 248. doi: 10.1016/j.jmst.2017.07.022
|
[51] |
H.B. Yang, Y.F. Chai, B. Jiang, et al., Simultaneous improvements in strength and ductility of as-extruded Mg–1.0Sn–0.5Zn alloy via Ce addition in combination with pre-twining deformation, J. Alloys Compd., 927(2022), art. No. 166879. doi: 10.1016/j.jallcom.2022.166879
|
[52] |
Y.F. Chai, B. Jiang, J.F. Song, et al., Effects of Zn and Ca addition on microstructure and mechanical properties of as-extruded Mg–1.0Sn alloy sheet, Mater. Sci. Eng. A, 746(2019), p. 82. doi: 10.1016/j.msea.2019.01.028
|
[53] |
Y. Jiang, Y.S. Li, and F. Liu, Microalloying-modulated strength-ductility trade-offs in as-cast Al–Mg–Si–Cu alloys, Mater. Sci. Eng. A, 855(2022), art. No. 143897. doi: 10.1016/j.msea.2022.143897
|
[54] |
Y.W. Song, E.H. Han, D.Y. Shan, C.D. Yim, and B.S. You, The role of second phases in the corrosion behavior of Mg–5Zn alloy, Corros. Sci., 60(2012), p. 238. doi: 10.1016/j.corsci.2012.03.030
|
[55] |
R. Arrabal, A. Pardo, M.C. Merino, et al., Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution, Corros. Sci., 55(2012), p. 301. doi: 10.1016/j.corsci.2011.10.033
|
[56] |
K. Ma, S.J. Liu, C.N. Dai, et al., Effect of Ni on the microstructure, mechanical properties and corrosion behavior of MgGd1Ni x alloys for fracturing ball applications, J. Mater. Sci. Technol., 91(2021), p. 121. doi: 10.1016/j.jmst.2021.02.043
|
[57] |
J.H. Jiang, X. Geng, and X.B. Zhang, Mechanical and corrosion properties of Mg–Gd–Cu–Zr alloy for degradable fracturing ball applications, Metals, 13(2023), No. 3, art. No. 446. doi: 10.3390/met13030446
|