Cite this article as: |
Jinpin Wu, Junhang Tian, Xueyi Sun, and Weidong Zhuang, Cycling performance of layered oxide cathode materials for sodium-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1720-1744. https://doi.org/10.1007/s12613-023-2776-5 |
Xueyi Sun E-mail: sunxy@ustb.edu.cn
Weidong Zhuang E-mail: wdzhuang@ustb.edu.cn
[1] |
H. Xu, Q. Yan, W.J. Yao, C.S. Lee, and Y.B. Tang, Mainstream optimization strategies for cathode materials of sodium-ion batteries, Small Struct., 3(2022), No. 4, art. No. 2100217. doi: 10.1002/sstr.202100217
|
[2] |
Y.J. Fang, X.Y. Yu, and X.W. Lou, A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres, Angew. Chem. Int. Ed., 56(2017), No. 21, p. 5801. doi: 10.1002/anie.201702024
|
[3] |
J. Wang, Y.F. Yuan, X.H. Rao, et al., Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1859. doi: 10.1007/s12613-023-2666-x
|
[4] |
C. Delmas, C. Fouassier, and P. Hagenmuller, Structural classification and properties of the layered oxides, Physica B+C, 99(1980), No. 1–4, p. 81.
|
[5] |
C.L. Zhao, M. Avdeev, L.Q. Chen, and Y.S. Hu, An O3-type Oxide with Low Sodium Content as the Phase-Transition-Free Anode for Sodium-Ion Batteries, Angew. Chem. Int. Ed., 57(2018), No. 24, p. 7056. doi: 10.1002/anie.201801923
|
[6] |
C.L. Zhao, Q.D. Wang, Z.P. Yao, et al., Rational design of layered oxide materials for sodium-ion batteries, Science, 370(2020), No. 6517, p. 708. doi: 10.1126/science.aay9972
|
[7] |
X.H. Ma, H.L. Chen, and G. Ceder, Electrochemical properties of monoclinic NaMnO2, J. Electrochem. Soc., 158(2011), No. 12, art. No. A1307. doi: 10.1149/2.035112jes
|
[8] |
S. Komaba, T. Nakayama, A. Ogata, et al., Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2, ECS Trans., 16(2009), No. 42, p. 43. doi: 10.1149/1.3112727
|
[9] |
N. Yabuuchi, M. Kajiyama, J. Iwatate, et al., P2-type Na x[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater., 11(2012), No. 6, p. 512. doi: 10.1038/nmat3309
|
[10] |
X.H. Rong, E.Y. Hu, Y.X. Lu, et al., Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition, Joule, 3(2019), No. 2, p. 503. doi: 10.1016/j.joule.2018.10.022
|
[11] |
Q. Wang, S. Mariyappan, G. Rousse, et al., Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution, Nat. Mater., 20(2021), No. 3, p. 353. doi: 10.1038/s41563-020-00870-8
|
[12] |
J.Y. Hwang, J. Kim, T.Y. Yu, and Y.K. Sun, A new P2-type layered oxide cathode with extremely high energy density for sodium-ion batteries, Adv. Energy Mater., 9(2019), No. 15, art. No. 1803346. doi: 10.1002/aenm.201803346
|
[13] |
Z.H. Wu, Y.X. Ni, S. Tan, et al., Realizing high capacity and zero strain in layered oxide cathodes via lithium dual-site substitution for sodium-ion batteries, J. Am. Chem. Soc., 145(2023), No. 17, p. 9596. doi: 10.1021/jacs.3c00117
|
[14] |
F.B. Spingler, M. Naumann, and A. Jossen, Capacity recovery effect in commercial LiFePO4/graphite cells, J. Electrochem. Soc., 167(2020), No. 4, art. No. 040526. doi: 10.1149/1945-7111/ab7900
|
[15] |
Q.W. Chen, S. Chen, L.L. Zhao, J.Z. Ma, H.S. Wang, and J.T. Zhang, Interface coating of iron nitride on carbon cloth for reversible lithium redox in rechargeable battery, Chem. Eng. J., 431(2022), art. No. 133961. doi: 10.1016/j.cej.2021.133961
|
[16] |
X.L. Cui, S.M. Wang, X.S. Ye, et al., Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries, Energy Storage Mater., 45(2022), p. 1153. doi: 10.1016/j.ensm.2021.11.016
|
[17] |
W.K. Pang, S. Kalluri, V.K. Peterson, et al., Interplay between electrochemistry and phase evolution of the P2-type Na x(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries, Chem. Mater., 27(2015), No. 8, p. 3150. doi: 10.1021/acs.chemmater.5b00943
|
[18] |
V. Duffort, E. Talaie, R. Black, and L.F. Nazar, Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: Insertion of carbonate anions, Chem. Mater., 27(2015), No. 7, p. 2515. doi: 10.1021/acs.chemmater.5b00097
|
[19] |
Y. You, A. Dolocan, W.D. Li, and A. Manthiram, Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries, Nano Lett., 19(2019), No. 1, p. 182. doi: 10.1021/acs.nanolett.8b03637
|
[20] |
C.L. Xu, H.R. Cai, Q.L. Chen, X.Q. Kong, H.L. Pan, and Y.S. Hu, Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 4, p. 5338. doi: 10.1021/acsami.1c21103
|
[21] |
T.Y. Song, C.C. Wang, and C.S. Lee, Structural degradation mechanisms and modulation technologies of layered oxide cathodes for sodium-ion batteries, Carbon Neutralization, 1(2022), No. 1, p. 68. doi: 10.1002/cnl2.7
|
[22] |
Y. Zhang, M.M. Wu, J.W. Ma, et al., Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: Oxygen redox chemistry and oxygen release suppression, ACS Cent. Sci., 6(2020), No. 2, p. 232. doi: 10.1021/acscentsci.9b01166
|
[23] |
M.D. Jiang, G.N. Qian, X.Z. Liao, et al., Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling, J. Energy Chem., 69(2022), p. 16. doi: 10.1016/j.jechem.2022.01.010
|
[24] |
R. House, U. Maitra, L.Y. Jin, et al., What triggers oxygen loss in oxygen redox cathode materials?, Chem. Mater., 31(2019), No. 9, p. 3293. doi: 10.1021/acs.chemmater.9b00227
|
[25] |
Y.C. Liu, C.C. Wang, S. Zhao, et al., Mitigation of Jahn–Teller distortion and Na+/vacancy ordering in a distorted manganese oxide cathode material by Li substitution, Chem. Sci., 12(2021), No. 3, p. 1062. doi: 10.1039/D0SC05427E
|
[26] |
L.J. Wang, Y.Z. Wang, J.B. Zhao, Y.H. Li, J.L. Wang, and X.H. Yang, Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries, Ionics, 25(2019), No. 10, p. 4775. doi: 10.1007/s11581-019-03035-z
|
[27] |
J.L. Zhang, J.B. Kim, J. Zhang, et al., Regulating Pseudo–Jahn–Teller effect and superstructure in layered cathode materials for reversible alkali-ion intercalation, J. Am. Chem. Soc., 144(2022), No. 17, p. 7929. doi: 10.1021/jacs.2c02875
|
[28] |
J.L. Zhang, W.H. Wang, W. Wang, S.W. Wang, and B.H. Li, Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 25, p. 22051. doi: 10.1021/acsami.9b03937
|
[29] |
Y.L. Liu, D. Wang, H.Y. Li, et al., Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries, J. Mater. Chem. A, 10(2022), No. 8, p. 3869. doi: 10.1039/D1TA10329F
|
[30] |
H. Fang, H.C. Ji, J.J. Zhai, et al., Mitigating jahn–teller effect in layered cathode material via interstitial doping for high-performance sodium-ion batteries, Small, 19(2023), No. 35, art. No. 2301360. doi: 10.1002/smll.202301360
|
[31] |
X.H. Yang, Y.Z. Wang, J.L. Wang, J.Y. Deng, and X. Zhang, Superior cyclability of Ce-doped P2-Na0.67Co0.20Mn0.80O2 cathode for sodium storage, J. Phys. Chem. Solids, 148(2021), art. No. 109750. doi: 10.1016/j.jpcs.2020.109750
|
[32] |
W.C. Qin, Y. Liu, J.F. Liu, Z.H. Yang, and Q.Q. Liu, Boosting the ionic transport and structural stability of Zn-doped O3-type NaNi1/3Mn1/3Fe1/3O2 cathode material for half/full sodium-ion batteries, Electrochim. Acta, 418(2022), art. No. 140357. doi: 10.1016/j.electacta.2022.140357
|
[33] |
L. Zhang, T. Yuan, L.K. Soule, et al., Enhanced ionic transport and structural stability of Nb-doped O3-NaFe0.55Mn0.45– xNb xO2 cathode material for long-lasting sodium-ion batteries, ACS Appl. Energy Mater., 3(2020), No. 4, p. 3770. doi: 10.1021/acsaem.0c00238
|
[34] |
H. Zhao, J.Z. Li, W.P. Liu, et al., Integrated titanium-substituted air stable O3 sodium layered oxide electrode via a complexant assisted route for high capacity sodium-ion battery, Electrochim. Acta, 388(2021), art. No. 138561. doi: 10.1016/j.electacta.2021.138561
|
[35] |
Y.H. Feng, Z.W. Cheng, C.L. Xu, et al., Low-cost Al-doped layered cathodes with improved electrochemical performance for rechargeable sodium-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 20, p. 23465. doi: 10.1021/acsami.2c03469
|
[36] |
J. Feng, S.H. Luo, J.C. Wang, et al., Stable electrochemical properties of magnesium-doped co-free layered P2-type Na0.67Ni0.33Mn0.67O2 cathode material for sodium ion batteries, ACS Sustainable Chem. Eng., 10(2022), No. 15, p. 4994. doi: 10.1021/acssuschemeng.2c00197
|
[37] |
W. Ko, M.K. Cho, J. Kang, et al., Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition, Energy Storage Mater., 46(2022), p. 289. doi: 10.1016/j.ensm.2022.01.023
|
[38] |
Y.F. Wen, J.J. Fan, C.G. Shi, et al., Probing into the working mechanism of Mg versus Co in enhancing the electrochemical performance of P2-Type layered composite for sodium-ion batteries, Nano Energy, 60(2019), p. 162. doi: 10.1016/j.nanoen.2019.02.074
|
[39] |
G.Q. Su, L.J. Li, Z. Shi, X.B. Ma, L. Ma, and Z.J. Cao, Boosting anionic redox through lithium doping in P2-layered cathode for high-performance sodium-ion batteries, Appl. Surf. Sci., 608(2023), art. No. 155097. doi: 10.1016/j.apsusc.2022.155097
|
[40] |
L.J. Li, G.Q. Su, C. Lu, et al., Effect of lithium doping in P2-Type layered oxide cathodes on the electrochemical performances of Sodium-Ion batteries, Chem. Eng. J., 446(2022), art. No. 136923. doi: 10.1016/j.cej.2022.136923
|
[41] |
Z.Y. Li, X.B. Ma, K. Sun, L.F. He, Y.Q. Li, and D.F. Chen, Na2/3Li1/9[Ni2/9Li1/9Mn2/3]O2: A high-performance solid-solution reaction layered oxide cathode material for sodium-ion batteries, ACS Appl. Energy Mater., 5(2022), No. 1, p. 1126. doi: 10.1021/acsaem.1c03483
|
[42] |
Q. Huang, M.Y. Wang, L. Zhang, et al., Shear-resistant interface of layered oxide cathodes for sodium ion batteries, Energy Storage Mater., 45(2022), p. 389. doi: 10.1016/j.ensm.2021.11.041
|
[43] |
L.T. Yang, L.Y. Kuo, J.M. López del Amo, et al., Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries, Adv. Funct. Mater., 31(2021), No. 38, art. No. 2102939. doi: 10.1002/adfm.202102939
|
[44] |
Y.S. Wang, Z.M. Feng, P.X. Cui, et al., Pillar-beam structures prevent layered cathode materials from destructive phase transitions, Nat. Commun., 12(2021), No. 1, art. No. 13. doi: 10.1038/s41467-020-20169-1
|
[45] |
C.C. Wang, L.J. Liu, S. Zhao, et al., Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery, Nat. Commun., 12(2021), No. 1, art. No. 2256. doi: 10.1038/s41467-021-22523-3
|
[46] |
G.X. Tang, Z.W. Chen, Z.Y. Lin, et al., K+-doped P2-Na0.67Fe0.5Mn0.5O2 cathode for highly enhanced rate performance sodium-ion battery, J. Alloys Compd., 947(2023), art. No. 169482. doi: 10.1016/j.jallcom.2023.169482
|
[47] |
X.Y. Li, J.Z. Miao, H.W. Long, et al., Sodium-storage performance of K+-intercalated Na xCu0.2Mn0.8O2, ACS Appl. Energy Mater., 5(2022), No. 3, p. 2758. doi: 10.1021/acsaem.1c03324
|
[48] |
Q. Zhang, Y.Y. Huang, Y. Liu, et al., F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries, Sci. China Mater., 60(2017), No. 7, p. 629. doi: 10.1007/s40843-017-9045-9
|
[49] |
H.L. Hu, H.C. He, R.K. Xie, et al., Achieving reversible Mn2+/Mn4+ double redox couple through anionic substitution in a P2-type layered oxide cathode, Nano Energy, 99(2022), art. No. 107390. doi: 10.1016/j.nanoen.2022.107390
|
[50] |
G.L. Liu, W.L. Xu, J.H. Wu, et al., Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation, J. Energy Chem., 83(2023), p. 53. doi: 10.1016/j.jechem.2023.04.029
|
[51] |
S.Q. Liu, B.Y. Wang, X. Zhang, S. Zhao, Z.H. Zhang, and H.J. Yu, Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries, Matter, 4(2021), No. 5, p. 1511. doi: 10.1016/j.matt.2021.02.023
|
[52] |
K. Liu, S.S. Tan, J. Moon, et al., Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries, Adv. Energy Mater., 10(2020), No. 19, art. No. 2000135. doi: 10.1002/aenm.202000135
|
[53] |
H. Chen, Z.G. Wu, Y.J. Zhong, et al., Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2- xF x cathode, Electrochim. Acta, 308(2019), p. 64. doi: 10.1016/j.electacta.2019.04.003
|
[54] |
C.J. Zhou, L.C. Yang, C.G. Zhou, et al., Fluorine-substituted O3-type NaNi0.4Mn0.25Ti0.3Co0.05O2− xF x cathode with improved rate capability and cyclic stability for sodium-ion storage at high voltage, J. Energy Chem., 60(2021), p. 341. doi: 10.1016/j.jechem.2021.01.038
|
[55] |
W.P. Kang, P. Ma, Z.N. Liu, et al., Tunable electrochemical activity of P2-Na0.6Mn0.7Ni0.3O2– xF x microspheres as high-rate cathodes for high-performance sodium ion batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 13, p. 15333. doi: 10.1021/acsami.1c02216
|
[56] |
S.Y. Chu, D. Kim, G. Choi, et al., Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: Random Na extraction and Na-free layer formation, Angew. Chem. Int. Ed., 62(2023), No. 12, art. No. e202216174. doi: 10.1002/anie.202216174
|
[57] |
H.R. Yao, P.F. Wang, Y. Gong, et al., Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries, J. Am. Chem. Soc., 139(2017), No. 25, p. 8440. doi: 10.1021/jacs.7b05176
|
[58] |
H.R. Shi, J.Y. Li, M.J. Liu, et al., Multiple strategies toward advanced P2-type layered Na xMnO2 for low-cost sodium-ion batteries, ACS Appl. Energy Mater., 4(2021), No. 8, p. 8183. doi: 10.1021/acsaem.1c01449
|
[59] |
R. Qi, M.H. Chu, W.G. Zhao, et al., A highly-stable layered Fe/Mn-based cathode with ultralow strain for advanced sodium-ion batteries, Nano Energy, 88(2021), art. No. 106206. doi: 10.1016/j.nanoen.2021.106206
|
[60] |
Q. Liu, W. Zheng, G.Y. Liu, et al., Realizing high-performance cathodes with cationic and anionic redox reactions in high-sodium-content P2-type oxides for sodium-ion batteries, ACS Appl. Mater. Interfaces, 15(2023), No. 7, p. 9324. doi: 10.1021/acsami.2c20642
|
[61] |
G.Q. Su, H.Q. Zheng, H. Chen, and S. Bao, Ca/Mg dual-doping P2-type Na0.67Ni0.17Co0.17Mn0.66O2 cathode material for sodium ion batteries, Mater. Lett., 331(2023), art. No. 133425. doi: 10.1016/j.matlet.2022.133425
|
[62] |
K. Kubota, T. Asari, and S. Komaba, Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni–Mn and Na-vacancy ordering and electrochemical properties, Adv. Mater., 35(2023), No. 26, art. No. 2300714. doi: 10.1002/adma.202300714
|
[63] |
I. Lee, G. Oh, S. Lee, et al., Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries, Energy Storage Mater., 41(2021), p. 183. doi: 10.1016/j.ensm.2021.05.046
|
[64] |
T.L. Zhang, H.C. Ji, X.H. Hou, et al., Promoting the performances of P2-type sodium layered cathode by inducing Na site rearrangement, Nano Energy, 100(2022), art. No. 107482. doi: 10.1016/j.nanoen.2022.107482
|
[65] |
Y.X. Zhang, G.Q. Liu, C. Su, et al., Study on the influence of Cu/F dual-doping on the Fe–Mn based compound as cathode material for sodium ion batteries, J. Power Sources, 536(2022), art. No. 231511. doi: 10.1016/j.jpowsour.2022.231511
|
[66] |
M.S. Chae, H.J. Kim, J. Lyoo, et al., Anomalous sodium storage behavior in Al/F dual-doped P2-type sodium manganese oxide cathode for sodium-ion batteries, Adv. Energy Mater., 10(2020), No. 43, art. No. 2002205. doi: 10.1002/aenm.202002205
|
[67] |
P.F. Zhou, J. Zhang, Z.N. Che, et al., Insights into the enhanced structure stability and electrochemical performance of Ti4+/F− co-doped P2-Na0.67Ni0.33Mn0.67O2 cathodes for sodium ion batteries at high voltage, J. Energy Chem., 67(2022), p. 655. doi: 10.1016/j.jechem.2021.10.032
|
[68] |
R.H. Nie, H.X. Chen, Y.T. Yang, C. Li, and H.M. Zhou, High-voltage layered manganese-based oxide cathode with excellent rate capability enabled by K/F co-doping, ACS Appl. Energy Mater., 6(2023), No. 4, p. 2358. doi: 10.1021/acsaem.2c03613
|
[69] |
B. Peng, G.L. Wan, N. Ahmad, L. Yu, X.Y. Ma, and G.Q. Zhang, Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries Adv. Energy Mater., 13(2023), No. 27, art. No. 2300334.
|
[70] |
L.Y. Yang, S.W. Sun, K. Du, et al., Prompting structure stability of O3-NaNi0.5Mn0.5O2 via effective surface regulation based on atomic layer deposition, Ceram. Int., 47(2021), No. 20, p. 28521. doi: 10.1016/j.ceramint.2021.07.009
|
[71] |
M.Z. Leng, J.Q. Bi, W.L. Wang, et al., Ultrathin MgO coating on fabricated O3-NaNi0.45Mn0.3Ti0.2Zr0.05O2 composite cathode via magnetron sputtering for enhanced kinetic and durable sodium-ion batteries, J. Alloys Compd., 855(2021), art. No. 157533. doi: 10.1016/j.jallcom.2020.157533
|
[72] |
K. Kaliyappan, T. Or, Y.P. Deng, Y.F. Hu, Z.Y. Bai, and Z.W. Chen, Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone, Adv. Funct. Mater., 30(2020), No. 17, art. No. 1910251. doi: 10.1002/adfm.201910251
|
[73] |
S. Bao, S.H. Luo, and J.L. Lu, Preparation and optimization of ZrO2 modified P2-type Na2/3Ni1/6Co1/6Mn2/3O2 with enhanced electrochemical performance as cathode for sodium ion batteries, Ceram. Int., 46(2020), No. 10, p. 16080. doi: 10.1016/j.ceramint.2020.03.160
|
[74] |
Y.Z. Wang and J.T. Tang, CeO2-modified P2-Na–Co–Mn–O cathode with enhanced sodium storage characteristics, RSC Adv., 8(2018), No. 43, p. 24143. doi: 10.1039/C8RA04210A
|
[75] |
Y.J. Chang, G.H. Xie, Y.M. Zhou, et al., Enhancing storage performance of P2-type Na2/3Fe1/2Mn1/2O2 cathode materials by Al2O3 coating, Trans. Nonferrous Met. Soc. China, 32(2022), No. 1, p. 262. doi: 10.1016/S1003-6326(22)65792-3
|
[76] |
Y.Q. Shao, X.X. Wang, B.C. Li, et al., Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries, Electrochim. Acta, 442(2023), art. No. 141915. doi: 10.1016/j.electacta.2023.141915
|
[77] |
D. Lu, Z.J. Yao, Y. Zhong, et al., Polypyrrole-coated sodium manganate hollow microspheres as a superior cathode for sodium ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 17, p. 15630. doi: 10.1021/acsami.9b02555
|
[78] |
K. Kaliyappan, G.R. Li, L. Yang, Z.Y. Bai, and Z.W. Chen, An ion conductive polyimide encapsulation: New insight and significant performance enhancement of sodium based P2 layered cathodes, Energy Storage Mater., 22(2019), p. 168. doi: 10.1016/j.ensm.2019.07.010
|
[79] |
J.L. Lin, Q. Huang, K. Dai, et al., Mitigating interfacial instability of high-voltage sodium layered oxide cathodes with coordinative polymeric structure, J. Power Sources, 552(2022), art. No. 232235. doi: 10.1016/j.jpowsour.2022.232235
|
[80] |
T.C. Liu, L. Yu, J. Lu, et al., Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy, Nat. Commun., 12(2021), No. 1, art. No. 6024. doi: 10.1038/s41467-021-26290-z
|
[81] |
N.S. Gao, Y.W. Guo, Y.H. Chen, et al., Improved electrochemical performance of P2-type concentration-gradient cathode material Na0.65Ni0.16Co0.14Mn0.7O2 with Mn-rich core for sodium-ion batteries, J. Alloys Compd., 958(2023), art. No. 170386. doi: 10.1016/j.jallcom.2023.170386
|
[82] |
J.Y. Hwang, S.M. Oh, S.T. Myung, K.Y. Chung, I. Belharouak, and Y.K. Sun, Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries, Nat. Commun., 6(2015), art. No. 6865. doi: 10.1038/ncomms7865
|
[83] |
S. Bao, S.H. Luo, Z.Y. Wang, S.X. Yan, Q. Wang, and J.Y. Li, Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries, J. Power Sources, 396(2018), p. 404. doi: 10.1016/j.jpowsour.2018.06.050
|
[84] |
S.H. Guo, Q. Li, P. Liu, M.W. Chen, and H.S. Zhou, Environmentally stable interface of layered oxide cathodes for sodium-ion batteries, Nat. Commun., 8(2017), No. 1, art. No. 135. doi: 10.1038/s41467-017-00157-8
|
[85] |
C. Hakim, H.D. Asfaw, R. Younesi, D. Brandell, K. Edström, and I. Saadoune, Development of P2 or P2/P3 cathode materials for sodium-ion batteries by controlling the Ni and Mn contents in Na0.7Co xMn yNi zO2 layered oxide, Electrochim. Acta, 438(2023), art. No. 141540. doi: 10.1016/j.electacta.2022.141540
|
[86] |
B.W. Xiao, X. Liu, M. Song, et al., A general strategy for batch development of high-performance and cost-effective sodium layered cathodes, Nano Energy, 89(2021), art. No. 106371. doi: 10.1016/j.nanoen.2021.106371
|
[87] |
J.M. Feng, D. Fang, Z. Yang, et al., A novel P2/O3 composite cathode toward synergistic electrochemical optimization for sodium ion batteries, J. Power Sources, 553(2023), art. No. 232292. doi: 10.1016/j.jpowsour.2022.232292
|
[88] |
L.Z. Yu, Z.W. Cheng, K. Xu, et al., Interlocking biphasic chemistry for high-voltage P2/O3 sodium layered oxide cathode, Energy Storage Mater., 50(2022), p. 730. doi: 10.1016/j.ensm.2022.06.012
|
[89] |
J. Darga and A. Manthiram, Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 47, p. 52729. doi: 10.1021/acsami.2c12098
|
[90] |
J. Lamb, K. Jarvis, and A. Manthiram, Molten-salt synthesis of O3-Type layered oxide single crystal cathodes with controlled morphology towards long-life sodium-ion batteries, Small, 18(2022), No. 43, art. No. 2106927. doi: 10.1002/smll.202106927
|
[91] |
B. Peng, Z.H. Zhou, J. Xu, et al., Crystal facet design in layered oxide cathode enables low-temperature sodium-ion batteries, ACS Materials Lett., 5(2023), No. 8, p. 2233. doi: 10.1021/acsmaterialslett.3c00625
|
[92] |
Y. Xiao, P.F. Wang, Y.X. Yin, et al., Exposing{010}active facets by multiple-layer oriented stacking nanosheets for high-performance capacitive sodium-ion oxide cathode, Adv. Mater., 30(2018), No. 40, art. No. 1803765. doi: 10.1002/adma.201803765
|
[93] |
F.P. Zhang, Y. Lu, Y. Guo, et al., Highly stabilized single-crystal P2-type layered oxides obtained via rational crystal orientation modulation for sodium-ion batteries, Chem. Eng. J., 458(2023), art. No. 141515. doi: 10.1016/j.cej.2023.141515
|
[94] |
N. Bucher, S. Hartung, A. Nagasubramanian, Y.L. Cheah, H.E. Hoster, and S. Madhavi, Layered Na xMnO2+ z in sodium ion batteries-influence of morphology on cycle performance, ACS Appl. Mater. Interfaces, 6(2014), No. 11, p. 8059. doi: 10.1021/am406009t
|
[95] |
K. Kaliyappan, W. Xaio, T.K. Sham, and X.L. Sun, High tap density co and Ni containing P2-Na0.66MnO2 buckyballs: A promising high voltage cathode for stable sodium-ion batteries, Adv. Funct. Mater., 28(2018), No. 32, art. No. 1801898. doi: 10.1002/adfm.201801898
|
[96] |
S. Wang, F. Chen, X.D. He, et al., Self-template synthesis of NaCrO2 submicrospheres for stable sodium storage, ACS Appl. Mater. Interfaces, 13(2021), No. 10, p. 12203. doi: 10.1021/acsami.0c23069
|
[97] |
Y.C. Liu, Q.Y. Shen, X.D. Zhao, et al., Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1907837. doi: 10.1002/adfm.201907837
|
[98] |
L.W. Liang, X. Sun, D.K. Denis, et al., Ultralong layered NaCrO2 nanowires: A competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 4, p. 4037. doi: 10.1021/acsami.8b20149
|
[99] |
S. Kalluri, K.H. Seng, W.K. Pang, et al., Electrospun P2-type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 12, p. 8953. doi: 10.1021/am502343s
|
[100] |
M.J. Aragón, P. Lavela, G. Ortiz, R. Alcántara, and J.L. Tirado, Nanometric P2-Na2/3Fe1/3Mn2/3O2 with controlled morphology as cathode for sodium-ion batteries, J. Alloys Compd., 724(2017), p. 465. doi: 10.1016/j.jallcom.2017.07.044
|
[101] |
J. Molenda, A. Milewska, W. Zając, et al., Impact of O3/P3 phase transition on the performance of the Na xTi1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6O2 cathode material for Na-ion batteries, J. Mater. Chem. A, 11(2023), No. 8, p. 4248. doi: 10.1039/D2TA08431G
|
[102] |
C.L. Zhao, F.X. Ding, Y.X. Lu, L.Q. Chen, and Y.S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries, Angew. Chem. Int. Ed., 59(2020), No. 1, p. 264. doi: 10.1002/anie.201912171
|
[103] |
Z.Y. Gu, J.Z. Guo, J.M. Cao, et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density, Adv. Mater., 34(2022), No. 14, art. No. 2110108. doi: 10.1002/adma.202110108
|
[104] |
B.S. Murty, J.W. Yeh, and S. Ranganathan, High Entropy Alloys, Butterworth-Heinemann, Oxford, 2014.
|
[105] |
A. Sarkar, Q.S. Wang, A. Schiele, et al., High-entropy oxides: Fundamental aspects and electrochemical properties, Adv. Mater., 31(2019), No. 26, art. No. 1806236. doi: 10.1002/adma.201806236
|
[106] |
G. Anand, A.P. Wynn, C.M. Handley, and C.L. Freeman, Phase stability and distortion in high-entropy oxides, Acta Mater., 146(2018), p. 119. doi: 10.1016/j.actamat.2017.12.037
|
[107] |
K. Walczak, A. Plewa, C. Ghica, et al., NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide–experimental and theoretical evidence of high electrochemical performance in sodium batteries, Energy Storage Mater., 47(2022), p. 500. doi: 10.1016/j.ensm.2022.02.038
|
[108] |
P.F. Zhou, Z.N. Che, J. Liu, et al., High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries, Energy Storage Mater., 57(2023), p. 618. doi: 10.1016/j.ensm.2023.03.007
|
[109] |
W.L. Xu, R.B. Dang, L. Zhou, et al., Conversion of surface residual alkali to solid electrolyte to enable Na-ion full cells with robust interfaces, Adv. Mater., 35(2023), No. 42, art. No. 2301314. doi: 10.1002/adma.202301314
|
[110] |
X.Y. Li, L.W. Liang, M.S. Su, et al., Multi-level modifications enabling chemomechanically stable Ni-rich O3-Layered cathode toward wide-temperature-tolerance quasi-solid-state Na-ion batteries, Adv. Energy Mater., 13(2023), No. 9, art. No. 2203701. doi: 10.1002/aenm.202203701
|
[111] |
X.C. Feng, Y. Li, Q.H. Shi, et al., A comprehensive modification enables the high rate capability of P2-Na0.75Mn0.67Ni0.33O2 for sodium-ion cathode materials, J. Energy Chem., 69(2022), p. 442. doi: 10.1016/j.jechem.2022.01.032
|
[112] |
S.Y. Zhao, Q.H. Shi, R.J. Qi, et al., NaTi2(PO4)3 modified O3-type NaNi1/3Fe1/3Mn1/3O2 as high rate and air stable cathode for sodium-ion batteries, Electrochim. Acta, 441(2023), art. No. 141859. doi: 10.1016/j.electacta.2023.141859
|
[113] |
H.B. Wang, F.X. Ding, Y.Q. Wang, et al. , In situ plastic-crystal-coated cathode toward high-performance Na-ion batteries, ACS Energy Lett., 8(2023), No. 3, p. 1434. doi: 10.1021/acsenergylett.3c00009
|
[114] |
M.L. Xu, M.C. Liu, Z.Z. Yang, C. Wu, and J.F. Qian, Research progress on presodiation strategies for high energy sodium-ion batteries, Acta Phys. Chim. Sin., 39(2023), No. 3, art. No. 2210043.
|
[115] |
P.Y. Li, N.Q. Hu, J.Y. Wang, S.C. Wang, and W.W. Deng, Recent progress and perspective: Na ion batteries used at low temperatures, Nanomaterials, 12(2022), No. 19, art. No. 3529. doi: 10.3390/nano12193529
|