Cite this article as: |
Yaqi Wu, Peter K. Liaw, Ruixuan Li, Weiran Zhang, Guihong Geng, Xuehui Yan, Guiqun Liu, and Yong Zhang, Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1350-1363. https://doi.org/10.1007/s12613-023-2777-4 |
Yong Zhang E-mail: drzhangy@ustb.edu.cn
[1] |
H.L. Zhuang, Sudoku-inspired high-Shannon-entropy alloys, Acta Mater., 225(2022), art. No. 117556. doi: 10.1016/j.actamat.2021.117556
|
[2] |
Y. Zhang, High Entropy Materials-Microstructures and Properties, IntechOpen Press, Rijeka, 2023.
|
[3] |
Y.S. Li, S.C. Zhou, and Y. Zhang, Future research directions and applications for high-entropy materials, [in] J. Brechtl and P.K. Liaw, eds., High-Entropy Materials : Theory , Experiments , and Applications, Springer, Cham, 2021, p. 721.
|
[4] |
X.H. Yan, Y. Zou, and Y. Zhang, Properties and processing technologies of high-entropy alloys, Mater. Futures, 1(2022), No. 2, art. No. 022002. doi: 10.1088/2752-5724/ac5e0c
|
[5] |
N. Xiao, X. Guan, D. Wang, et al., Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667. doi: 10.1007/s12613-023-2641-6
|
[6] |
G. Laplanche, P. Gadaud, C. Bärsch, et al., Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy, J. Alloys Compd., 746(2018), p. 244. doi: 10.1016/j.jallcom.2018.02.251
|
[7] |
C.L. Lin, J.L. Lee, S.M. Kuo, et al., Investigation on the thermal expansion behavior of FeCoNi and Fe30Co30Ni30Cr10− xMn x high entropy alloys, Mater. Chem. Phys., 271(2012), art. No. 124907.
|
[8] |
M.S. Jadhav, D. Sahane, A. Verma, and S. Singh, Thermal stability and thermal expansion behavior of FeCoCrNi2Al high entropy alloy, Adv. Powder Technol., 32(2021), No. 2, p. 378. doi: 10.1016/j.apt.2020.12.019
|
[9] |
M. Behera, A. Panigrahi, M. Bönisch, et al., Structural stability and thermal expansion of TiTaNbMoZr refractory high entropy alloy, J. Alloys Compd., 892(2022), p. 162154. doi: 10.1016/j.jallcom.2021.162154
|
[10] |
S.C. Zhou, C.D. Dai, H.X. Hou, Y.P. Lu, P.K. Liaw, and Y. Zhang, A remarkable toughening high-entropy-alloy wire with a bionic bamboo fiber heterogeneous structure, Scripta Mater., 226(2023), art. No. 115234. doi: 10.1016/j.scriptamat.2022.115234
|
[11] |
Y.Y. Zhao, Superplasticity of Cu–Sn and Ni–Mn–Ga Shape Memory Microwires by Glass-Coated Melt Spinning Technique [Dissertation], University of Science and Technology Beijing, Beijing, 2015, p. 75.
|
[12] |
X.H. Chen, X.C Zhang, Y. Zhang, and G.L. Chen, Processing and structures of porous bulk metallic glass with unidirectional opening pores, Rare Met. Mater. Eng., 37(2008), Suppl. 4, p. 695.
|
[13] |
Y.Y. Yue, X.H. Yan, and Y. Zhang, Nano-fiber-structured Cantor alloy films prepared by sputtering, J. Mater. Res. Technol., 21(2022), p. 1120. doi: 10.1016/j.jmrt.2022.09.107
|
[14] |
Y.Q. Wu, Y.S. Cai, J.P. Hao, et al., Co47.5Fe28.5Ni19Si3.3Al1.7 high-entropy skeletons fabricated by selective laser melting and properties tuned by pressure infiltration of Al, Res. Appl. Mater. Sci., 4(2022), No. 2, p. 24. doi: 10.33142/rams.v4i2.8467
|
[15] |
X.F. Song, P.K. Liaw, Z.Y. Wei, et al, Evolution of the microstructures, magnetic and mechanical behaviors of Co47.5Fe28.5Ni19Si3.4Al1.6 high-entropy alloy fabricated by laser powder bed fusion, Addit. Manuf., 71(2023), art. No. 103593.
|
[16] |
P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
|
[17] |
D.Y. Li and Y. Zhang, The ultrahigh charpy impact toughness of forged Al xCoCrFeNi high entropy alloys at room and cryogenic temperatures, Intermetallics, 70(2016), p. 24. doi: 10.1016/j.intermet.2015.11.002
|
[18] |
D.Y. Li, Z.M. Li, L. Xie, Y. Zhang, and W.R. Wang, Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy, Nano Res., 15(2022), No. 6, p. 4859. doi: 10.1007/s12274-021-3719-y
|
[19] |
Y.Z. Wang, Z.M. Jiao, G.B. Bian, et al., Dynamic tension and constitutive model in Fe40Mn20Cr20Ni20 high-entropy alloys with a heterogeneous structure, Mater. Sci. Eng. A, 839(2022), art. No. 142837. doi: 10.1016/j.msea.2022.142837
|
[20] |
Y.Q. Tang and D.Y. Li, Dynamic response of high-entropy alloys to ballistic impact, Sci. Adv., 8(2022), No. 32, art. No. eabp9096. doi: 10.1126/sciadv.abp9096
|
[21] |
W.R. Zhang, Y.S. Li, P. Liaw, and Y. Zhang, A strategic design route to find a depleted uranium high-entropy alloy with great strength, Metals, 12(2022), No. 4, art. No. 699. doi: 10.3390/met12040699
|
[22] |
J. Shi, Y.Z. Zhang, X. Wang, et al., Microstructure and mechanical properties of UNbTiHf1– xMo x high-entropy alloys, Mater. Sci. Eng. A, 860(2022), art. No. 144239. doi: 10.1016/j.msea.2022.144239
|
[23] |
Y.S. Li, P.K. Liaw, and Y. Zhang, Microstructures and properties of the low-density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 high-entropy alloys, Metals, 12(2022), p. 496. doi: 10.3390/met12030496
|
[24] |
X.H. Yan, P.K. Liaw, and Y. Zhang, Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates, J. Mater. Sci. Technol., 110 (2022), p. 109 doi: 10.1016/j.jmst.2021.08.034
|
[25] |
J.J. Yi, F.Y. Cao, M.Q. Xu, L. Yang, L. Wang, and L. Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1231. doi: 10.1007/s12613-020-2214-x
|
[26] |
M.A. Khan, M. Hamza, J. Brechtl, et al., Development and characterization of a low-density TiNbZrAlTa refractory high entropy alloy with enhanced compressive strength and plasticity, Mater. Charact., 205(2023), art. No. 113301. doi: 10.1016/j.matchar.2023.113301
|
[27] |
M. Abubaker Khan, T.L. Wang, C.S. Feng, et al., A superb mechanical behavior of newly developed lightweight and ductile Al0.5Ti2Nb1Zr1W x refractory high entropy alloy via nano-precipitates and dislocations induced-deformation, Mater. Des., 222(2022), art. No. 111034. doi: 10.1016/j.matdes.2022.111034
|
[28] |
X.F. Liu, Z.L. Tian, X.F. Zhang, et al., “Self-sharpening” tungsten high-entropy alloy, Acta Mater., 186(2020), p. 257. doi: 10.1016/j.actamat.2020.01.005
|
[29] |
K. Jin, C. Lu, L.M. Wang, et al., Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys, Scripta Mater., 119(2016), p. 65. doi: 10.1016/j.scriptamat.2016.03.030
|
[30] |
D.J.M. King, S.T.Y. Cheung, S.A. Humphry-Baker, et al., High temperature, low neutron cross-section high-entropy alloys in the Nb–Ti–V–Zr system, Acta Mater., 166(2019), p. 435. doi: 10.1016/j.actamat.2019.01.006
|
[31] |
R.X. Li, Z. Ren, Y. Wu, et al., Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy, Mater. Sci. Eng. A, 802(2021), art. No. 140637. doi: 10.1016/j.msea.2020.140637
|
[32] |
Y.R. Shi, W.T. Ye, D.P. Hua, et al., Interfacial engineering for enhanced mechanical performance: High-entropy alloy/graphene nanocomposites, Mater. Today. Phys., 38(2023), art. No. 101220. doi: 10.1016/j.mtphys.2023.101220
|