Lei Jia, Heng Cui, Shufeng Yang, Shaomin Lü, Xingfei Xie, and Jinglong Qu, Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1876-1889. https://doi.org/10.1007/s12613-023-2779-2
Cite this article as:
Lei Jia, Heng Cui, Shufeng Yang, Shaomin Lü, Xingfei Xie, and Jinglong Qu, Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1876-1889. https://doi.org/10.1007/s12613-023-2779-2
Research Article

Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing

+ Author Affiliations
  • Corresponding authors:

    Heng Cui    E-mail: cuiheng@ustb.edu.cn

    Shufeng Yang    E-mail: yangshufeng@ustb.edu.cn

  • Received: 28 August 2023Revised: 1 November 2023Accepted: 6 November 2023Available online: 10 November 2023
  • We discussed the decrease in residual stress, precipitation evolution, and mechanical properties of GH4151 alloy in different annealing temperatures, which were studied by the scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), and electron backscatter diffraction (EBSD). The findings reveal that annealing processing has a significant impact on diminishing residual stresses. As the annealing temperature rose from 950 to 1150°C, the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa. Moreover, the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration. Meanwhile, the annealing treatment promotes the decomposition of the Laves, accompanied by the precipitation of μ-(Mo6Co7) starting at 950°C and reaching a maximum value at 1050°C. The tensile strength and plasticity of the annealing alloy at 1150°C reached the maximum (1394 MPa, 56.1%) which was 131%, 200% fold than those of the as-cast alloy (1060 MPa, 26.6%), but the oxidation process in the alloy was accelerated at 1150°C. The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase, along with the shape and dispersal of the γ′ phase.
  • loading
  • [1]
    E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski, Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting, Mater. Sci. Eng. A, 639(2015), p. 647. doi: 10.1016/j.msea.2015.05.035
    [2]
    G.D. Zhao, X.M. Zang, Y. Jing, N. Lü, and J.J. Wu, Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li, Mater. Sci. Eng. A, 815(2021), art. No. 141293. doi: 10.1016/j.msea.2021.141293
    [3]
    M.C. Hardy, M. Detrois, E.T. McDevitt, et al., Solving recent challenges for wrought Ni-base superalloys, Metall. Mater. Trans. A, 51(2020), No. 6, p. 2626. doi: 10.1007/s11661-020-05773-6
    [4]
    Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, and H.Y. Yu, Effect of Ti addition on high-temperature oxidation behavior of Co–Ni-based superalloy, J. Iron Steel Res. Int., 27(2020), No. 10, p. 1179. doi: 10.1007/s42243-020-00379-z
    [5]
    S.L. Yang, S.F. Yang, W. Liu, J.S. Li, J.G. Gao, and Y. Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 939. doi: 10.1007/s12613-022-2549-6
    [6]
    S.M. Lv, J.B. Chen, X.B. He, C.L. Jia, K. Wei, and X.H. Qu, Investigation on sub-solvus recrystallization mechanisms in an advanced γ–γ′ nickel-based superalloy GH4151, Materials, 13(2020), No. 20, art. No. 4553. doi: 10.3390/ma13204553
    [7]
    L. Jia, H. Cui, S.F. Yang, S.M. Lv, X.F. Xie, and J.L. Qu, Effect of carbon addition on microstructure and mechanical properties of a typical hard-to-deform Ni-base superalloy, Prog. Nat. Sci. Mater. Int., 33(2023), No. 2, p. 232. doi: 10.1016/j.pnsc.2023.05.008
    [8]
    X.X. Li, C.L. Jia, Y. Zhang, S.M. Lv, and Z.H. Jiang, Segregation and homogenization for a new nickel-based superalloy, Vacuum, 177(2020), art. No. 109379. doi: 10.1016/j.vacuum.2020.109379
    [9]
    Y.G. Tan, F. Liu, A.W. Zhang, et al., Element segregation and solidification behavior of a Nb, Ti, Al co-strengthened superalloy ЭК151, Acta Metall. Sin. Engl. Lett., 32(2019), No. 10, p. 1298. doi: 10.1007/s40195-019-00894-3
    [10]
    M.M. Bakradze, S.V. Ovsepyan, A.A. Buiakina, and B.S. Lomberg, Development of Ni-base superalloy with operating temperature up to 800°C for gas turbine disks, Inorg. Mater. Appl. Res., 9(2018), No. 6, p. 1044. doi: 10.1134/S2075113318060035
    [11]
    X.X. Li, C.L. Jia, Y. Zhang, S.M. Lü, and Z.H. Jiang, Cracking mechanism in as-cast GH4151 superalloy ingot with high γ′; phase content, Trans. Nonferrous Met. Soc. China, 30(2020), No. 10, p. 2697. doi: 10.1016/S1003-6326(20)65413-9
    [12]
    M.H. Zhang, B.C. Zhang, Y.J. Wen, and X.H. Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
    [13]
    L. Zhang, L. Wang, Y. Liu, X. Song, T. Yu, and R. Duan, Hot cracking behavior of large size GH4742 superalloy vacuum induction melting ingot, J. Iron Steel Res. Int., 29(2022), No. 9, p. 1505. doi: 10.1007/s42243-022-00767-7
    [14]
    F. D’Elia, C. Ravindran, and D. Sediako, Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy, Mater. Sci. Eng. A, 624(2015), p. 169. doi: 10.1016/j.msea.2014.11.057
    [15]
    Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, and L.Z. Zhuang, Recent advances in hot tearing during casting of aluminium alloys, Prog. Mater. Sci., 117(2021), art. No. 100741. doi: 10.1016/j.pmatsci.2020.100741
    [16]
    X.Q. Zhang, H.B. Chen, L.M. Xu, J.J. Xu, X.K. Ren, and X.Q. Chen, Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy, Mater. Des., 183(2019), art. No. 108105. doi: 10.1016/j.matdes.2019.108105
    [17]
    X.Z. Zhou, Y.H. Zhang, Y. Zhang, H.D. Fu, and J.X. Xie, Effect of Ni content on solidification behavior and hot-tearing susceptibility of Co–Ni–Al–W-based superalloys, Metall. Mater. Trans. A, 53(2022), No. 9, p. 3465. doi: 10.1007/s11661-022-06762-7
    [18]
    Y.S. Li, Y.W. Dong, Z.H. Jiang, et al., Study on microsegregation and homogenization process of a novel nickel-based wrought superalloy, J. Mater. Res. Technol., 19(2022), p. 3366. doi: 10.1016/j.jmrt.2022.06.088
    [19]
    Z. Zhao and J.X. Dong, Effect of eutectic characteristics on hot tearing of cast superalloys, J. Mater. Eng. Perform., 28(2019), No. 8, p. 4707. doi: 10.1007/s11665-019-04230-9
    [20]
    X.X. Li, C.L. Jia, Z.H. Jiang, Y. Zhang, and S.M. Lv, Investigation of solidification behavior in a new high alloy Ni-based superalloy, JOM, 72(2020), No. 11, p. 4139. doi: 10.1007/s11837-020-04346-7
    [21]
    S. Kou, A criterion for cracking during solidification, Acta Mater., 88(2015), p. 366. doi: 10.1016/j.actamat.2015.01.034
    [22]
    J.J. Xu, X. Lin, P.F. Guo, et al., The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy, J. Alloys Compd., 749(2018), p. 859. doi: 10.1016/j.jallcom.2018.03.366
    [23]
    M.D. Rowe, Ranking the resistance of wrought superalloys to strain-age cracking, Welding J., 85(2006), No. 2, p. 27-s.
    [24]
    J.P. Oliveira, A.D. LaLonde, and J. Ma, Processing parameters in laser powder bed fusion metal additive manufacturing, Mater. Des., 193(2020), art. No. 108762. doi: 10.1016/j.matdes.2020.108762
    [25]
    E. Edin, F. Svahn, M. Neikter, and P. Åkerfeldt, Stress relief heat treatment and mechanical properties of laser powder bed fusion built 21-6-9 stainless steel, Mater. Sci. Eng. A, 868(2023), art. No. 144742. doi: 10.1016/j.msea.2023.144742
    [26]
    B. Diepold, N. Vorlaufer, S. Neumeier, T. Gartner, and M. Göken, Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 640. doi: 10.1007/s12613-020-1991-6
    [27]
    Y.T. Ding, H. Wang, J.Y. Xu, Y. Hu, and D. Zhang, Evolution of microstructure and properties of SLM formed inconel 738 alloy during stress relief annealing, Rare Met. Mater. Eng., 49(2020), No. 12, p. 4311.
    [28]
    J.J. Zhu and W.H. Yuan, Effect of pretreatment process on microstructure and mechanical properties in Inconel 718 alloy, J. Alloys Compd., 939(2023), art. No. 168707. doi: 10.1016/j.jallcom.2023.168707
    [29]
    H. Wang, X. Zhang, G.B. Wang, et al., Selective laser melting of the hard-to-weld IN738LC superalloy: Efforts to mitigate defects and the resultant microstructural and mechanical properties, J. Alloys Compd., 807(2019), art. No. 151662. doi: 10.1016/j.jallcom.2019.151662
    [30]
    S. Carlsson and P.L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing. Part I: Theoretical and numerical analysis, Acta Mater., 49(2001), No. 12, p. 2179. doi: 10.1016/S1359-6454(01)00122-7
    [31]
    C. Zhu, Z.H. Zhao, Q.F. Zhu, et al., Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy, J. Mater. Sci. Technol., 112(2022), p. 114. doi: 10.1016/j.jmst.2021.09.053
    [32]
    G.D. Zhao, G.L. Yang, F. Liu, X. Xin, and W.R. Sun, Transformation mechanism of (γ+γ′) and the effect of cooling rate on the final solidification of U720Li alloy, Acta Metall. Sin. Engl. Lett., 30(2017), No. 9, p. 887. doi: 10.1007/s40195-017-0566-7
    [33]
    X.X. Li, C.L. Jia, Y. Zhang, S.M. Lü, and Z.H. Jiang, Incipient melting phase and its dissolution kinetics for a new superalloy, Trans. Nonferrous Met. Soc. China, 30(2020), No. 8, p. 2107. doi: 10.1016/S1003-6326(20)65364-X
    [34]
    H.M. Tawancy, Precipitation characteristics of μ-phase in wrought nickel-base alloys and its effect on their properties, J. Mater. Sci., 31(1996), No. 15, p. 3929. doi: 10.1007/BF00352653
    [35]
    W. Sun, X.Z. Qin, J.T. Guo, L.H. Lou, and L.Z. Zhou, Microstructure stability and mechanical properties of a new low cost hot-corrosion resistant Ni–Fe–Cr based superalloy during long-term thermal exposure, Mater. Des., 69(2015), p. 70. doi: 10.1016/j.matdes.2014.12.030
    [36]
    A. Agh and A. Amini, Investigation of the stress rupture behavior of GTD-111 superalloy melted by VIM/VAR, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1035. doi: 10.1007/s12613-018-1654-z
    [37]
    R. Liu, X.T. Wang, P.P. Hu, C.B. Xiao, and J.S. He, Low cycle fatigue behavior of micro-grain casting K4169 superalloy at room temperature, Prog. Nat. Sci. Mater. Int., 32(2022), No. 6, p. 693. doi: 10.1016/j.pnsc.2022.10.009
    [38]
    H. Xu, Y.H. Zhang, H.D. Fu, F. Xue, X.Z. Zhou, and J.X. Xie, Effects of boron or carbon on solidification behavior of Co–Ni–Al–W-based superalloys, J. Alloys Compd., 891(2022), art. No. 161965. doi: 10.1016/j.jallcom.2021.161965
    [39]
    L. Gong, B. Chen, Z.H. Du, M.S. Zhang, R.C. Liu, and K. Liu, Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G, J. Mater. Sci. Technol., 34(2018), No. 3, p. 541. doi: 10.1016/j.jmst.2016.11.009
    [40]
    Y.L. Xu, Q.M. Jin, X.S. Xiao, et al., Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4600. doi: 10.1016/j.msea.2011.02.072
    [41]
    X.L. Su, Q.Y. Xu, R.N. Wang, Z.L. Xu, S.Z. Liu, and B.C. Liu, Microstructural evolution and compositional homogenization of a low re-bearing Ni-based single crystal superalloy during through progression of heat treatment, Mater. Des., 141(2018), p. 296. doi: 10.1016/j.matdes.2017.12.020
    [42]
    S. Sui, H. Tan, J. Chen, et al., The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing, Acta Mater., 164(2019), p. 413. doi: 10.1016/j.actamat.2018.10.032
    [43]
    M.Q. Ding, P. Hu, Y. Ru, et al., Effects of rare-earth elements on the oxidation behavior of γ-Ni in Ni-based single crystal superalloys: A first-principles study from a perspective of surface adsorption, Appl. Surf. Sci., 547(2021), art. No. 149173. doi: 10.1016/j.apsusc.2021.149173
    [44]
    X. Song, L. Wang, Y. Liu, and H.P. Ma, Effects of temperature and rare earth content on oxidation resistance of Ni-based superalloy, Prog. Nat. Sci. Mater. Int., 21(2011), No. 3, p. 227. doi: 10.1016/S1002-0071(12)60035-5
    [45]
    H.M. Tawancy and N.M. Abbas, An analytical electron microscopy study of the role of La and Y during high-temperature oxidation of selected Ni-base alloys, Scripta Metall. Mater., 29(1993), No. 5, p. 689. doi: 10.1016/0956-716X(93)90420-W
    [46]
    W.Z. Zhou, Y.S. Tian, Q.B. Tan, et al., Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion, Addit. Manuf., 58(2022), art. No. 103016.
    [47]
    N.N. Lu, Z.L. Lei, K. Hu, et al., Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition, Addit. Manuf., 34(2020), art. No. 101228.
    [48]
    E. Chauvet, P. Kontis, E.A. Jägle, et al., Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting, Acta Mater., 142(2018), p. 82. doi: 10.1016/j.actamat.2017.09.047
    [49]
    T. Ungár, I. Dragomir, Révész, and A. Borbély, The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice, J. Appl. Crystallogr., 32(1999), No. 5, p. 992. doi: 10.1107/S0021889899009334
    [50]
    B. Dubiel, P. Indyka, I. Kalemba-Rec, et al., The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ′ and TCP phases in single crystal Ni-base superalloy, J. Alloys Compd., 731(2018), p. 693. doi: 10.1016/j.jallcom.2017.10.076
    [51]
    R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock, Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys, Metall. Mater. Trans. A, 40(2009), No. 7, p. 1588. doi: 10.1007/s11661-009-9858-5
    [52]
    H.A. Roth, C.L. Davis, and R.C. Thomson, Modeling solid solution strengthening in nickel alloys, Metall. Mater. Trans. A, 28(1997), No. 6, p. 1329. doi: 10.1007/s11661-997-0268-2
    [53]
    J.S. Wang, M.D. Mulholland, G.B. Olson, and D.N. Seidman, Prediction of the yield strength of a secondary-hardening steel, Acta Mater., 61(2013), No. 13, p. 4939. doi: 10.1016/j.actamat.2013.04.052
    [54]
    T.Q. Liu, Z.X. Cao, H. Wang, G.L. Wu, J.J. Jin, and W.Q. Cao, A new 2.4 GPa extra-high strength steel with good ductility and high toughness designed by synergistic strengthening of nano-particles and high-density dislocations, Scripta Mater., 178(2020), p. 285. doi: 10.1016/j.scriptamat.2019.11.045
    [55]
    S.Y. Zhang, X. Lin, L.L. Wang, et al., Strengthening mechanisms in selective laser-melted Inconel718 superalloy, Mater. Sci. Eng. A, 812(2021), art. No. 141145. doi: 10.1016/j.msea.2021.141145
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(574) PDF Downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return