Cite this article as: |
Xiawei Yang, Tingxi Meng, Qiang Chu, Yu Su, Zhenguo Guo, Rui Xu, Wenlong Fan, Tiejun Ma, and Wenya Li, A review of linear friction welding of Ni-based superalloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1382-1391. https://doi.org/10.1007/s12613-023-2782-7 |
Wenya Li E-mail: liwy@nwpu.edu.cn
[1] |
S.L. Yang, S.F. Yang, W. Liu, et al., Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 939. doi: 10.1007/s12613-022-2549-6
|
[2] |
H.H. Tayeband and S.M. Rafiaei, Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 327. doi: 10.1007/s12613-020-2211-0
|
[3] |
M.H. Zhang, B.C. Zhang, Y.J. Wen, et al., Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
|
[4] |
E.Y. Liu, Q.S. Ma, X.T. Li, et al., Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy, Int. J. Miner. Metall. Mater., (2024). DOI: 10.1007/s12613-024-2887-7
|
[5] |
J. Kang, R.G. Li, D.Y. Wu, et al., On the low cycle fatigue behaviors of Ni-based superalloy at room temperature: Deformation and fracture mechanisms, Mater. Charact, 211(2024), art. No. 113920. doi: 10.1016/j.matchar.2024.113920
|
[6] |
Y. Su, X.W. Yang, T.X. Meng, et al., Strengthening mechanism and forming control of linear friction welded GH4169 alloy joints, Chin. J. Aeronaut., 37(2024), No. 4, p. 609. doi: 10.1016/j.cja.2024.01.026
|
[7] |
H.Y. Zhang and L.F. Zhang, Development overview of aeroengine integral blisk and its manufacturing technology at home and abroad, Aeronaut. Manuf. Technol., 56(2013), No. 23/24, p. 38.
|
[8] |
M. Smith, L. Bichler, J. Gholipour, and P. Wanjara, Mechanical properties and microstructural evolution of in-service Inconel 718 superalloy repaired by linear friction welding, Int. J. Adv. Manuf. Technol., 90(2017), No. 5-8, p. 1931. doi: 10.1007/s00170-016-9515-2
|
[9] |
H. Wu, M. Sun, and Y. Yang. Research progress in linear friction welding technology, Welding Technol., 43(2014) No. 7, p. 1.
|
[10] |
Z.L. Yi, J.G. Shan, Y. Zhao, et al, Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys, Int. J. Miner. Metall. Mater, 31(2024), No. 5, p. 1072. doi: 10.1007/s12613-024-2869-9
|
[11] |
X.S. Li, D. Sukhomlinov, and Z.Q. Que, Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 118. doi: 10.1007/s12613-023-2747-x
|
[12] |
M.M. Chen, R.H. Shi, Z.Z. Liu, et al., Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2224. doi: 10.1007/s12613-023-2664-z
|
[13] |
Y. Su, X.W. Yang, D. Wu, et al., Controlling deformation and residual stresses in a TIG joint for Invar steel molds, J. Mater. Res. Technol., 27(2023), p. 490. doi: 10.1016/j.jmrt.2023.10.036
|
[14] |
Y. Su, X.W. Yang, D. Wu, et al., Optimizing welding sequence of TIG cross-joint of Invar steel using residual stresses and deformations, J. Manuf. Process., 105(2023), p. 232. doi: 10.1016/j.jmapro.2023.09.047
|
[15] |
Z.G. Guo, T.J. Ma, X.W. Yang, et al., Linear friction welding of Ti60 near-α titanium alloy: Investigating phase transformations and dynamic recrystallization mechanisms, Mater. Charact., 194(2022), art. No. 112424. doi: 10.1016/j.matchar.2022.112424
|
[16] |
Z.G. Guo, T.J. Ma, W.Y. Li, et al., Intergrowth bonding mechanism and mechanical property of linear friction welded dissimilar near-alpha to near-beta titanium alloy joint, Adv. Eng. Mater., 23(2021), No. 5, art. No. 2001479. doi: 10.1002/adem.202001479
|
[17] |
X.W. Yang, T.X Meng, Y. Su, et al., Evolution of microstructure and mechanical properties of cold spray additive manufactured aluminum deposit on copper substrate, Mater. Sci. Eng. A, 891(2024), art. No. 146024. doi: 10.1016/j.msea.2023.146024
|
[18] |
Z.G. Guo, T.J. Ma, X.W. Yang, et al., In-situ investigation on dislocation slip concentrated fracture mechanism of linear friction welded dissimilar Ti17(α + β)/Ti17(β) titanium alloy joint, Mater. Sci. Eng. A, 872(2023), art. No. 144991. doi: 10.1016/j.msea.2023.144991
|
[19] |
Z.G. Guo, T.J. Ma, X. Chen, et al., Interfacial bonding mechanism of linear friction welded dissimilar Ti2AlNb–Ti60 joint: Grain intergrowth induced by combined effects of dynamic recrystallization, phase transformation and elemental diffusion, J. Mater. Res. Technol., 24(2023), p. 5660. doi: 10.1016/j.jmrt.2023.04.184
|
[20] |
Z.G. Guo, T.J. Ma, X.W. Yang, J. Li, W.Y. Li, and A. Vairis, Multi-scale analyses of phase transformation mechanisms and hardness in linear friction welded Ti17(α + β)/Ti17(β) dissimilar titanium alloy joint, Chin. J. Aeronaut., 37(2024), No. 1, p. 312. doi: 10.1016/j.cja.2023.08.018
|
[21] |
X.W. Yang, S.T. Ma, Q. Chu, et al., Investigation of microstructure and mechanical properties of GH4169 superalloy joint produced by linear friction welding, J. Mater. Res. Technol., 24(2023), p. 8373. doi: 10.1016/j.jmrt.2023.05.081
|
[22] |
M. Orłowska, L. Olejnik, D. Campanella, et al., Application of linear friction welding for joining ultrafine grained aluminium, J. Manuf. Process., 56(2020), p. 540. doi: 10.1016/j.jmapro.2020.05.012
|
[23] |
X.W. Yang, W.Y. Li, and T.J. Ma, Finite element analysis of the effect of micro-pore defect on linear friction welding of medium carbon steel, China Weld., 23(2014), No. 1, p. 1.
|
[24] |
W.Y. Li, T.J. Ma, S.Q. Yang, et al., Effect of friction time on flash shape and axial shortening of linear friction welded 45 steel, Mater. Lett., 62(2008), No. 2, p. 293. doi: 10.1016/j.matlet.2007.05.037
|
[25] |
T.J. Ma, Y.G. Li, W.Y. Li, Y. Zhang, D.G. Shi, and A. Vairis, Studies of the interfacial structure of a linear friction welded Fe/Ni joint: First principles calculation and TEM validation, Mater. Charact., 129(2017), p. 60. doi: 10.1016/j.matchar.2017.04.008
|
[26] |
Y.M. Li, Y.C. Liu, C.X. Liu, et al., Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel, J. Mater. Sci. Technol., 34(2018), No. 4, p. 653. doi: 10.1016/j.jmst.2017.11.031
|
[27] |
Y. Su, W.Y. Li, X.Y. Wang, et al., On the process variables and weld quality of a linear friction welded dissimilar joint between S31042 and S34700 austenitic steels, Adv. Eng. Mater., 21(2019), No. 7, art. No. 1801354. doi: 10.1002/adem.201801354
|
[28] |
T. J. Ma, W. Y. Li, Q. Z. Xu, et al., Microstructure evolution and mechanical properties of linear friction welded 45 steel joint, Adv. Eng. Mater., 9(2007), No. 8, p. 703. doi: 10.1002/adem.200700090
|
[29] |
X.W. Yang, T.X. Meng, Y. Su, et al., The effect of inclusions and pores on creep crack propagation of linear friction welded joints of GH4169 superalloy, J. Mater. Res. Technol., 29(2024), p. 4636. doi: 10.1016/j.jmrt.2024.02.154
|
[30] |
M. Karadge, M. Preuss, P.J. Withers, and S. Bray, Importance of crystal orientation in linear friction joining of single crystal to polycrystalline nickel-based superalloys, Mater. Sci. Eng. A, 491(2008), No. 1-2, p. 446. doi: 10.1016/j.msea.2008.04.064
|
[31] |
T.J. Ma, L.F. Tang, W.Y. Li, Y. Zhang, Y. Xiao, and A. Vairis, Linear friction welding of a solid-solution strengthened Ni-based superalloy: Microstructure evolution and mechanical properties studies, J. Manuf. Process., 34(2018), p. 442. doi: 10.1016/j.jmapro.2018.06.011
|
[32] |
P.H. Geng, G.L. Qin, H. Ma, et al., Numerical modelling on the plastic flow and interfacial self-cleaning in linear friction welding of superalloys, J. Mater. Process. Technol., 296(2021), art. No. 117198. doi: 10.1016/j.jmatprotec.2021.117198
|
[33] |
A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Suppressed liquation and microcracking in linear friction welded WASPALOY, Mater. Des., 36(2012), p. 113. doi: 10.1016/j.matdes.2011.11.007
|
[34] |
T.J. Ma, X. Chen, W.Y. Li, X.W. Yang, Y. Zhang, and S.Q. Yang, Microstructure and mechanical property of linear friction welded nickel-based superalloy joint, Mater. Des., 89(2016), p. 85. doi: 10.1016/j.matdes.2015.09.143
|
[35] |
R.R. Ye, H.Y. Li, R.G. Ding, et al., Microstructure and microhardness of dissimilar weldment of Ni-based superalloys IN718-IN713LC, Mater. Sci. Eng. A, 774(2020), art. No. 138894. doi: 10.1016/j.msea.2019.138894
|
[36] |
T.J. Ma, M. Yan, X.W. Yang, W.Y. Li, and Y.J. Chao, Microstructure evolution in a single crystal nickel-based superalloy joint by linear friction welding, Mater. Des., 85(2015), p. 613. doi: 10.1016/j.matdes.2015.07.046
|
[37] |
X.M. Chen, C. Lin Y., M.S. Chen, et al., Microstructural evolution of a nickel-based superalloy during hot deformation, Mater. Des., 77(2015), p. 41.
|
[38] |
W.Y. Li, T.J. Ma, Y. Zhang, et al., Microstructure characterization and mechanical properties of linear friction welded Ti-6Al-4V alloy, Adv. Eng. Mater., 10(2008), No. 1-2, p. 89. doi: 10.1002/adem.200700034
|
[39] |
P. Wanjara and M. Jahazi, Linear friction welding of Ti–6Al–4V: Processing, microstructure, and mechanical-property inter-relationships, Metall. Mater. Trans. A, 36(2005), No. 8, p. 2149. doi: 10.1007/s11661-005-0335-5
|
[40] |
M. Karadge, M. Preuss, C. Lovell, P.J. Withers, and S. Bray, Texture development in Ti–6Al–4V linear friction welds, Mater. Sci. Eng. A, 459(2007), No. 1-2, p. 182. doi: 10.1016/j.msea.2006.12.095
|
[41] |
C.C. Zhang, T.C. Zhang, Y.J. Ji, and J.H. Huang, Effects of heat treatment on microstructure and microhardness of linear friction welded dissimilar Ti alloys, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3540. doi: 10.1016/S1003-6326(13)62898-8
|
[42] |
J. Romero, M.M. Attallah, M. Preuss, M. Karadge, and S.E. Bray, Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction welds, Acta Mater., 57(2009), No. 18, p. 5582. doi: 10.1016/j.actamat.2009.07.055
|
[43] |
E. Dalgaard, P. Wanjara, J. Gholipour, X. Cao, and J.J. Jonas, Linear friction welding of a near-β titanium alloy, Acta Mater., 60(2012), No. 2, p. 770. doi: 10.1016/j.actamat.2011.04.037
|
[44] |
W.Y. Li, T.J. Ma, and S.Q. Yang, Microstructure evolution and mechanical properties of linear friction welded Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) titanium alloy joints, Adv. Eng. Mater., 12(2010), No. 1-2, p. 35. doi: 10.1002/adem.200900185
|
[45] |
X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, and X.Q. Wu, Oxidation behavior of three different zones of linear friction welded Ti2AlNb alloy, Adv. Eng. Mater., 18(2016), No. 11, p. 1944. doi: 10.1002/adem.201600529
|
[46] |
H. Peng, Y.X. Wu, T. Zhang, S.Y. Chen, and C. Zhang, Residual stresses in linear friction welding of TC17 titanium alloy considering phase fraction, Trans. Nonferrous Met. Soc. China, 34(2024), No. 1, p. 184. doi: 10.1016/S1003-6326(23)66390-3
|
[47] |
F. Rotundo, A. Marconi, A. Morri, and A. Ceschini, Dissimilar linear friction welding between a SiC particle reinforced aluminum composite and a monolithic aluminum alloy: Microstructural, tensile and fatigue properties, Mater. Sci. Eng. A, 559(2013), p. 852. doi: 10.1016/j.msea.2012.09.033
|
[48] |
A. Lis, H. Mogami, T. Matsuda, et al., Hardening and softening effects in aluminium alloys during high-frequency linear friction welding, J. Mater. Process. Technol., 255(2018), p. 547. doi: 10.1016/j.jmatprotec.2018.01.002
|
[49] |
H. Mogami, T. Matsuda, T. Sano, R. Yoshida, H. Hori, and A. Hirose, High-frequency linear friction welding of aluminum alloys, Mater. Des., 139(2018), p. 457. doi: 10.1016/j.matdes.2017.11.043
|
[50] |
G. Buffa, M. Cammalleri, D. Campanella, and L. Fratini, Shear coefficient determination in linear friction welding of aluminum alloys, Mater. Des., 82(2015), p. 238. doi: 10.1016/j.matdes.2015.05.070
|
[51] |
X.W. Yang, W.Y. Li, J.L. Li, et al., Finite element modeling of the linear friction welding of GH4169 superalloy, Mater. Des., 87(2015), p. 215. doi: 10.1016/j.matdes.2015.08.036
|
[52] |
A. Vairis and M. Frost, Modelling the linear friction welding of titanium blocks, Mater. Sci. Eng. A, 292(2000), No. 1, p. 8. doi: 10.1016/S0921-5093(00)01036-4
|
[53] |
A. Vairis and M. Frost, High frequency linear friction welding of a titanium alloy, Wear, 217(1998), No. 1, p. 117. doi: 10.1016/S0043-1648(98)00145-8
|
[54] |
A. Vairis and M. Frost, On the extrusion stage of linear friction welding of Ti 6Al 4V, Mater. Sci. Eng. A, 271(1999), p. 477. doi: 10.1016/S0921-5093(99)00449-9
|
[55] |
A.R. McAndrew, P.A. Colegrove, C. Bühr, B. C.D. Flipo, and A. Vairis, A literature review of Ti–6Al–4V linear friction welding, Prog. Mater. Sci., 92 (2018), p. 225. doi: 10.1016/j.pmatsci.2017.10.003
|
[56] |
R. Turner, J.C. Gebelin, R.M. Ward, and R.C. Reed, Linear friction welding of Ti–6Al–4V: Modelling and validation, Acta Mater., 59(2011), No. 10, p. 3792. doi: 10.1016/j.actamat.2011.02.028
|
[57] |
J.T. Liu, J.L. Li, X.G. Li, et al., Fatigue fracture behavior of a Ti17 joint under various heat treatment specifications prepared by linear friction welding, Mater. Charact., 205(2023), art. No. 113318. doi: 10.1016/j.matchar.2023.113318
|
[58] |
R. Turner, R.M. Ward, R. March, and R.C. Reed, The magnitude and origin of residual stress in Ti–6Al–4V linear friction welds: An investigation by validated numerical modeling, Metall. Mater. Trans. B, 43(2012), No. 1, p. 186. doi: 10.1007/s11663-011-9563-9
|
[59] |
X. Zhang, J.J. Zhang, Y.K. Yao, et al., Anomalous enhancing effects of electric pulse treatment on strength and ductility of TC17 linear friction welding joints, J. Mater. Sci. Technol, 203(2024), p. 155. doi: 10.1016/j.jmst.2024.04.008
|
[60] |
Z.Y. Dang, G.L. Qin, H. Ma, and P.H. Geng, Multi-scale characterizations of microstructure and mechanical properties of Ti6242 alloy linear friction welded joint with post-welded heat treatment, Trans. Nonferrous Met. Soc. China, 33(2023), No. 4, p. 1114. doi: 10.1016/S1003-6326(23)66169-2
|
[61] |
T.J. Ma, W.Y. Li, and S.Y. Yang, Impact toughness and fracture analysis of linear friction welded Ti–6Al–4V alloy joints, Mater. Des., 30(2009), No. 6, p. 2128. doi: 10.1016/j.matdes.2008.08.029
|
[62] |
W.Y. Li, H. Wu, T.J. Ma, C.L. Yang, and Z.W. Chen, Influence of parent metal microstructure and post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti–6Al–4V joint, Adv. Eng. Mater., 14(2012), No. 5, p. 312. doi: 10.1002/adem.201100203
|
[63] |
M. Grujicic, G. Arakere, B. Pandurangan, C.F. Yen, and B.A. Cheeseman, Process modeling of Ti–6Al–4V linear friction welding (LFW), J. Mater. Eng. Perform., 21(2012), No. 10, p. 2011. doi: 10.1007/s11665-011-0097-8
|
[64] |
P. Frankel, M. Preuss, A. Steuwer, P.J. Withers, and S. Bray, Comparison of residual stresses in Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo linear friction welds, Mater. Sci. Technol., 25(2009), No. 5, p. 640. doi: 10.1179/174328408X332825
|
[65] |
X.W. Yang, W.Y. Li, J. Li, T.J. Ma, and J. Guo, FEM analysis of temperature distribution and experimental study of microstructure evolution in friction interface of GH4169 superalloy, Mater. Des., 84(2015), p. 133. doi: 10.1016/j.matdes.2015.06.123
|
[66] |
X.W. Yang, W.Y. Li, Y. Feng, S.Q. Yu, and B. Xiao, Physical simulation of interfacial microstructure evolution for hot compression bonding behavior in linear friction welded joints of GH4169 superalloy, Mater. Des., 104(2016), p. 436. doi: 10.1016/j.matdes.2016.05.013
|
[67] |
X.W. Yang, W.Y. Li, J. Ma, et al., Thermo-physical simulation of the compression testing for constitutive modeling of GH4169 superalloy during linear friction welding, J. Alloys Compd., 656(2016), p. 395. doi: 10.1016/j.jallcom.2015.09.267
|
[68] |
P.H. Geng, G.L. Qin, J. Zhou, and Z.D. Zou, Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process, J. Manuf. Process., 32(2018), p. 469. doi: 10.1016/j.jmapro.2018.03.017
|
[69] |
G.L. Qin, P.H. Geng, J. Zhou, and Z.D. Zou, Modeling of thermo-mechanical coupling in linear friction welding of Ni-based superalloy, Mater. Des., 172(2019), art. No. 107766. doi: 10.1016/j.matdes.2019.107766
|
[70] |
W.Y. Li, T.J. Ma, and J.L. Li, Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters, Mater. Des., 31(2010), No. 3, p. 1497. doi: 10.1016/j.matdes.2009.08.023
|
[71] |
W.Y. Li, S.X. Shi, F.F. Wang, et al., Heat reflux in flash and its effect on joint temperature history during linear friction welding of steel, Int. J. Therm. Sci., 67(2013), p. 192. doi: 10.1016/j.ijthermalsci.2012.12.004
|
[72] |
X. Song, M. Xie, F. Hofmann, et al., Residual stresses in Linear Friction Welding of aluminium alloys, Mater. Des., 50(2013), p. 360. doi: 10.1016/j.matdes.2013.03.051
|
[73] |
A.R. McAndrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, M.J. Russell, and L.A. Lee, Modelling of the workpiece geometry effects on Ti–6Al–4V linear friction welds, Mater. Des., 87(2015), p. 1087. doi: 10.1016/j.matdes.2015.09.080
|
[74] |
A.R. McAndrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, and M.J. Russell, Modelling the influence of the process inputs on the removal of surface contaminants from Ti–6Al–4V linear friction welds, Mater. Des., 66(2015), p. 183. doi: 10.1016/j.matdes.2014.10.058
|
[75] |
P. Effertz, F. Fuchs, and N. Enzinger, 3D modelling of flash formation in linear friction welded 30CrNiMo8 steel chain, Metals, 7(2017), No. 10, art. No. 449. doi: 10.3390/met7100449
|
[76] |
P. Jedrasiak, H.R. Shercliff, A.R. McAndrew, and P.A. Colegrove, Thermal modelling of linear friction welding, Mater. Des., 156(2018), p. 362. doi: 10.1016/j.matdes.2018.06.043
|
[77] |
P.S. Effertz, F. Fuchs, and N. Enzinger, The influence of process parameters in linear friction welded 30CrNiMo8 small cross-section: A modelling approach, Sci. Technol. Weld. Join., 24(2019), No. 2, p. 121. doi: 10.1080/13621718.2018.1492210
|
[78] |
J.S.Müller, M. Rettenmayr, D. Schneefeld, O. Roder, and W. Fried, FEM simulation of the linear friction welding of titanium alloys, Comput. Mater. Sci., 48(2010), No. 4, p. 749. doi: 10.1016/j.commatsci.2010.03.026
|
[79] |
L. Fratini, G. Buffa, D. Campanella, and D. La Spisa, Investigations on the linear friction welding process through numerical simulations and experiments, Mater. Des., 40(2012), p. 285. doi: 10.1016/j.matdes.2012.03.058
|
[80] |
M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, C.F. Yen, and B.A. Cheeseman, Linear friction welding process model for carpenter custom 465 precipitation-hardened martensitic stainless steel, J. Mater. Eng. Perform., 23(2014), No. 6, p. 2182. doi: 10.1007/s11665-014-0985-9
|
[81] |
W.Y. Li, F.F. Wang, S.X. Shi, T.J. Ma, J.L. Li, and A. Vairis, 3D finite element analysis of the effect of process parameters on linear friction welding of mild steel, J. Mater. Eng. Perform., 23(2014), No. 11, p. 4010. doi: 10.1007/s11665-014-1197-z
|
[82] |
M. Grujicic, R. Yavari, J.S. Snipes, and S. Ramaswami, A linear friction welding process model for Carpenter Custom 465 precipitation-hardened martensitic stainless steel: a weld microstructure-evolution analysis, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 229(2015), p. 1997. doi: 10.1177/0954405414542137
|
[83] |
G. Buffa, D. Campanella, S. Pellegrino, and L. Fratini, Weld quality prediction in linear friction welding of AA6082-T6 through an integrated numerical tool, J. Mater. Process. Technol., 231(2016), p. 389. doi: 10.1016/j.jmatprotec.2016.01.012
|
[84] |
A.R. McAndrew, P.A. Colegrove, B.C.D. Flipo, and C. Bühr, 3D modelling of Ti–6Al–4V linear friction welds, Sci. Technol. Weld. Join., 22(2017), No. 6, p. 496. doi: 10.1080/13621718.2016.1263439
|
[85] |
C. Bühr, B. Ahmad, P.A. Colegrove, A.R. McAndrew, H. Guo, and X. Zhang, Prediction of residual stress within linear friction welds using a computationally efficient modelling approach, Mater. Des., 139(2018), p. 222. doi: 10.1016/j.matdes.2017.11.013
|
[86] |
D. Baffari, G. Buffa, D. Campanella, L. Fratini, and F. Micari, Single block 3D numerical model for linear friction welding of titanium alloy, Sci. Technol. Weld. Join., 24(2019), No. 2, p. 130. doi: 10.1080/13621718.2018.1492211
|
[87] |
P.H. Geng, G.L. Qin, J. Zhou, and Z.D. Zou, Finite element models of friction behaviour in linear friction welding of a Ni-based superalloy, Int. J. Mech. Sci., 152(2019), p. 420. doi: 10.1016/j.ijmecsci.2019.01.014
|
[88] |
K. Yonekura, T. Shinohara, and K. Masaki, Cost-effective estimation of flash extrusion and defects in linear friction welding using Voronoi diagrams, J. Manuf. Process., 68(2021), p. 158. doi: 10.1016/j.jmapro.2021.07.012
|
[89] |
X.W. Yang, W.Y. Li, Y.X. Xu, X.R. Dong, K.W. Hu, and Y.F. Zou, Performance of two different constitutive models and microstructural evolution of GH4169 superalloy, Math. Biosci. Eng., 16(2019), No. 2, p. 1034. doi: 10.3934/mbe.2019049
|
[90] |
A. Vairis and N. Christakis, The development of a continuum framework for friction welding processes with the aid of micro-mechanical parameterisations, Int. J. Model. Identif. Contr., 2(2007), No. 4, art. No. 347. doi: 10.1504/IJMIC.2007.016417
|
[91] |
P.H. Geng, G.L. Qin, and J. Zhou, A computational modeling of fully friction contact-interaction in linear friction welding of Ni-based superalloys, Mater. Des., 185(2020), art. No. 108244. doi: 10.1016/j.matdes.2019.108244
|
[92] |
P.H. Geng, G.L. Qin, C.G. Li, H. Wang, and J. Zhou, Study on the importance of thermo-elastic effects in FE simulations of linear friction welding, J. Manuf. Process., 56(2020), p. 602. doi: 10.1016/j.jmapro.2020.05.051
|
[93] |
P.H. Geng, H. Ma, M.X. Wang, et al., Dissimilar linear friction welding of Ni-based superalloys, Int. J. Mach. Tools Manuf., 191(2023), art. No. 104062. doi: 10.1016/j.ijmachtools.2023.104062
|
[94] |
M. Javidikia, M. Sadeghifar, H. Champliaud, and M. Jahazi, Grain size and temperature evolutions during linear friction welding of Ni-base superalloy Waspaloy: Simulations and experimental validations, J. Adv. Join. Process., 8(2023), art. No. 100150. doi: 10.1016/j.jajp.2023.100150
|
[95] |
F. Masoumi, D. Shahriari, H. Monajati, et al., Linear friction welding of AD730™ Ni-base superalloy: Process-microstructure-property interactions, Mater. Des., 183(2019), art. No. 108117. doi: 10.1016/j.matdes.2019.108117
|
[96] |
S. Tabaie, F. Rézaï-Aria, B.C.D. Flipo, and M. Jahazi, Grain size and misorientation evolution in linear friction welding of additively manufactured IN718 to forged superalloy AD730™, Mater. Charact., 171(2021), art. No. 110766. doi: 10.1016/j.matchar.2020.110766
|
[97] |
S. Tabaie, Farhad R. Aria, B.C.D. Flipo, and M. Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730TM: Evolution of strengthening phases. J. Matei. Sci. Technol., 96(2022), p. 248. doi: 10.1016/j.jmst.2021.03.086
|
[98] |
P.H. Geng, G.L. Qin, T.Y. Li, J. Zhou, Z.D. Zou, and F. Yang, Microstructural characterization and mechanical property of GH4169 superalloy joints obtained by linear friction welding, J. Manuf. Process., 45(2019), p. 100. doi: 10.1016/j.jmapro.2019.06.032
|
[99] |
P.H. Geng, G.L. Qin, H. Ma, J. Zhou, and N.S. Ma, Linear friction welding of dissimilar Ni-based superalloys: Microstructure evolution and thermo-mechanical interaction, J. Mater. Res. Technol., 11(2021), p. 633. doi: 10.1016/j.jmrt.2021.01.036
|
[100] |
A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Analysis of integrity and microstructure of linear friction welded Waspaloy, Mater. Charact., 104(2015), p. 149. doi: 10.1016/j.matchar.2015.04.011
|
[101] |
M. Smith, J.B. Levesque, L. Bichler, D. Sediako, J. Gholipour, and P. Wanjara, Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches, Mater. Sci. Eng. A, 691(2017), p. 168. doi: 10.1016/j.msea.2017.03.038
|
[102] |
F. Masoumi, L. Thébaud, D. Shahriari, et al., High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy, Mater. Sci. Eng. A, 710(2018), p. 214. doi: 10.1016/j.msea.2017.10.091
|
[103] |
X.W. Yang, C. Peng, T.J. Ma, et al., Finite element analysis of fatigue crack growth of linear friction welded superalloy joints, Acta Aeronaut. Astronaut. Sin., 43(2022), No. 2, art. No. 625004.
|
[104] |
J.W. Chen, E. Salvati, F. Uzun, et al., An experimental and numerical analysis of residual stresses in a TIG weldment of a single crystal nickel-base superalloy, J. Manuf. Process., 53(2020), p. 190. doi: 10.1016/j.jmapro.2020.02.007
|
[105] |
H. Pasiowiec, B. Dubiel, R. Dziurka, et al., Effect of creep deformation on the microstructure evolution of Inconel 625 nickel-based superalloy additively manufactured by laser powder bed fusion, Mater. Sci. Eng. A, 887(2023), art. No. 145742. doi: 10.1016/j.msea.2023.145742
|
[106] |
S.M. Wen, Z.C. Liu, D. Mi, S.H. Yang, B.C. Li, and C. Jiang, Novel fatigue life prediction method of a Ni-based superalloy welded joint considering defect and temperature, Int. J. Fatigue, 177(2023), art. No. 107924. doi: 10.1016/j.ijfatigue.2023.107924
|