Cite this article as: |
Kevin Huang, A thermodynamic perspective on electrode poisoning in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1449-1455. https://doi.org/10.1007/s12613-023-2783-6 |
Kevin Huang E-mail: huang46@cec.sc.edu
[1] |
D.K. Niakolas, Sulfur poisoning of Ni-based anodes for solid oxide fuel cells in H/C-based fuels, Appl. Catal. A, 486(2014), p. 123. doi: 10.1016/j.apcata.2014.08.015
|
[2] |
S.P. Jiang and X.B. Chen, Chromium deposition and poisoning of cathodes of solid oxide fuel cells–A review, Int. J. Hydrogen Energy, 39(2014), No. 1, p. 505. doi: 10.1016/j.ijhydene.2013.10.042
|
[3] |
Z.B. Yang, M.Y. Guo, N. Wang, C.Y. Ma, J.L. Wang, and M.F. Han, A short review of cathode poisoning and corrosion in solid oxide fuel cell, Int. J. Hydrogen Energy, 42(2017), No. 39, p. 24948. doi: 10.1016/j.ijhydene.2017.08.057
|
[4] |
C.W. Sun, R. Hui, and J. Roller, Cathode materials for solid oxide fuel cells: A review, J. Solid State Electrochem., 14(2010), No. 7, p. 1125. doi: 10.1007/s10008-009-0932-0
|
[5] |
K. Hilpert, D. Das, M. Miller, D.H. Peck, and R.Weiß, Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes, J. Electrochem. Soc., 143(1996), No. 11, p. 3642. doi: 10.1149/1.1837264
|
[6] |
S.P. Jiang, Activation, microstructure, and polarization of solid oxide fuel cell cathodes, J. Solid State Electrochem., 11(2007), No. 1, p. 93. doi: 10.1007/s10008-005-0076-9
|
[7] |
H.G. Desta, D. Tian, Q. Yang, et al., Developing a new Sr and Co-free composite cathode of solid oxide fuel cells with high performance, Chem. Phys. Lett., 806(2022), art. No. 140037. doi: 10.1016/j.cplett.2022.140037
|
[8] |
F. Pişkin, R. Bliem, and B. Yildiz, Effect of crystal orientation on the segregation of aliovalent dopants at the surface of La0.6Sr0.4CoO3, J. Mater. Chem. A, 6(2018), No. 29, p. 14136. doi: 10.1039/C8TA01293H
|
[9] |
Y.T. Wen, T.R. Yang, D. Lee, H.N. Lee, E.J. Crumlin, and K. Huang, Temporal and thermal evolutions of surface Sr-segregation in pristine and atomic layer deposition modified La0.6Sr0.4CoO3− δ epitaxial films, J. Mater. Chem. A, 6(2018), No. 47, p. 24378. doi: 10.1039/C8TA08355J
|
[10] |
F.F. Wang, H. Kishimoto, T. Ishiyama, et al., A review of sulfur poisoning of solid oxide fuel cell cathode materials for solid oxide fuel cells, J. Power Sources, 478(2020), art. No. 228763. doi: 10.1016/j.jpowsour.2020.228763
|
[11] |
J. Hong, M.R. Anisur, S.J. Heo, P.K. Dubey, and P. Singh, Sulfur poisoning and performance recovery of SOFC air electrodes, Front. Energy Res., 9(2021), art. No. 643431. doi: 10.3389/fenrg.2021.643431
|
[12] |
R.R. Liu, S. Taniguchi, Y. Shiratori, K. Ito, and K. Sasaki, Influence of SO2 on the long-term durability of SOFC cathodes, ECS Trans., 35(2011), No. 1, p. 2255. doi: 10.1149/1.3570221
|
[13] |
E. Bucher, C. Gspan, and W. Sitte, Degradation and regeneration of the SOFC cathode material La0.6Sr0.4CoO3− δ in SO2-containing atmospheres, Solid State Ionics, 272(2015), p. 112. doi: 10.1016/j.ssi.2015.01.009
|
[14] |
F. Wang, K. Yamaji, D.H. Cho, et al., Evaluation of sulfur dioxide poisoning for LSCF cathodes, Fuel Cells, 13(2013), No. 4, p. 520. doi: 10.1002/fuce.201200172
|
[15] |
T. Daio, P. Mitra, S.M. Lyth, and K. Sasaki, Atomic-resolution analysis of degradation phenomena in SOFCS: A case study of SO2 poisoning in LSM cathodes, Int. J. Hydrogen Energy, 41(2016), No. 28, p. 12214. doi: 10.1016/j.ijhydene.2016.05.216
|
[16] |
R. Wang, L.R. Parent, S. Gopalan, and Y. Zhong, Experimental and computational investigations on the SO2 poisoning of (La0.8Sr0.2)0.95MnO3 cathode materials, Adv. Powder Mater., 2(2023), No. 1, art. No. 100062. doi: 10.1016/j.apmate.2022.100062
|
[17] |
J.A. Schuler, H. Yokokawa, C.F. Calderone, et al., Combined Cr and S poisoning in solid oxide fuel cell cathodes, J. Power Sources, 201(2012), p. 112. doi: 10.1016/j.jpowsour.2011.10.123
|
[18] |
C.H. Bartholomew, P.K. Agrawal, and J.R. Katzer, Sulfur poisoning of metals, Adv. Catal., 31(1982), p. 135.
|
[19] |
S.W. Zha, Z. Cheng, and M.L. Liu, Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells, J. Electrochem. Soc., 154(2007), No. 2, p. B201. doi: 10.1149/1.2404779
|
[20] |
J.G. McCarty and H. Wise, Thermodynamics of sulfur chemisorption on metals. I. Alumina-supported nickel, J. Chem. Phys., 72(1980), No. 12, p. 6332. doi: 10.1063/1.439156
|
[21] |
M. Yamada, H. Hirashima, A. Kitada, K.I. Izumi, and J. Nakamura, Three-Ni-atom cluster formed by sulfur adsorption on Ni(111), Surf. Sci., 602(2008), No. 9, p. 1659. doi: 10.1016/j.susc.2008.02.033
|
[22] |
G.A. Sargent, G.B. Freeman, and J.L.R. Chao, Adsorption of CO on, and S poisoning of, a perfect Ni(111) single crystal and a Ni(111) crystal with small angle boundaries, Surf. Sci., 100(1980), No. 2, p. 342. doi: 10.1016/0039-6028(80)90377-5
|
[23] |
C.C. Xu, J.W. Zondlo, H.O. Finklea, O. Demircan, M.Y. Gong, and X.B. Liu, The effect of phosphine in syngas on Ni–YSZ anode-supported solid oxide fuel cells, J. Power Sources, 193(2009), No. 2, p. 739. doi: 10.1016/j.jpowsour.2009.04.044
|
[24] |
C.C. Xu, J.W. Zondlo, M.Y. Gong, and X.B. Liu, Effect of PH3 poisoning on a Ni–YSZ anode-supported solid oxide fuel cell under various operating conditions, J. Power Sources, 196(2011), No. 1, p. 116. doi: 10.1016/j.jpowsour.2010.07.018
|