Kevin Huang, A thermodynamic perspective on electrode poisoning in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1449-1455. https://doi.org/10.1007/s12613-023-2783-6
Cite this article as:
Kevin Huang, A thermodynamic perspective on electrode poisoning in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1449-1455. https://doi.org/10.1007/s12613-023-2783-6
Research ArticleOpen Access

A thermodynamic perspective on electrode poisoning in solid oxide fuel cells

+ Author Affiliations
  • Corresponding author:

    Kevin Huang    E-mail: huang46@cec.sc.edu

  • Received: 22 August 2023Revised: 8 November 2023Accepted: 9 November 2023Available online: 10 November 2023
  • A critical challenge to the commercialization of clean and high-efficiency solid oxide fuel cell (SOFC) technology is the insufficient stack lifespan caused by a variety of degradation mechanisms, which are associated with cell components and chemical feedstocks. Cell components related degradation refers to thermal/chemical/electrochemical deterioration of cell materials under operating conditions, whereas the latter regards impurities in feedstocks of oxidant (air) and reductant (fuel). This article provides a thermodynamic perspective on the understanding of the impurities-induced degradation mechanisms in SOFCs. The discussion focuses on using thermodynamic analysis to elucidate poisoning mechanisms in cathodes by impurity species such as Cr, CO2, H2O, and SO2 and in the anode by species such as S (or H2S), SiO2, and P2 (or PH3). The author hopes the presented fundamental insights can provide a theoretical foundation for searching for better technical solutions to address the critical degradation challenges.
  • loading
  • [1]
    D.K. Niakolas, Sulfur poisoning of Ni-based anodes for solid oxide fuel cells in H/C-based fuels, Appl. Catal. A, 486(2014), p. 123. doi: 10.1016/j.apcata.2014.08.015
    [2]
    S.P. Jiang and X.B. Chen, Chromium deposition and poisoning of cathodes of solid oxide fuel cells–A review, Int. J. Hydrogen Energy, 39(2014), No. 1, p. 505. doi: 10.1016/j.ijhydene.2013.10.042
    [3]
    Z.B. Yang, M.Y. Guo, N. Wang, C.Y. Ma, J.L. Wang, and M.F. Han, A short review of cathode poisoning and corrosion in solid oxide fuel cell, Int. J. Hydrogen Energy, 42(2017), No. 39, p. 24948. doi: 10.1016/j.ijhydene.2017.08.057
    [4]
    C.W. Sun, R. Hui, and J. Roller, Cathode materials for solid oxide fuel cells: A review, J. Solid State Electrochem., 14(2010), No. 7, p. 1125. doi: 10.1007/s10008-009-0932-0
    [5]
    K. Hilpert, D. Das, M. Miller, D.H. Peck, and R.Weiß, Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes, J. Electrochem. Soc., 143(1996), No. 11, p. 3642. doi: 10.1149/1.1837264
    [6]
    S.P. Jiang, Activation, microstructure, and polarization of solid oxide fuel cell cathodes, J. Solid State Electrochem., 11(2007), No. 1, p. 93. doi: 10.1007/s10008-005-0076-9
    [7]
    H.G. Desta, D. Tian, Q. Yang, et al., Developing a new Sr and Co-free composite cathode of solid oxide fuel cells with high performance, Chem. Phys. Lett., 806(2022), art. No. 140037. doi: 10.1016/j.cplett.2022.140037
    [8]
    F. Pişkin, R. Bliem, and B. Yildiz, Effect of crystal orientation on the segregation of aliovalent dopants at the surface of La0.6Sr0.4CoO3, J. Mater. Chem. A, 6(2018), No. 29, p. 14136. doi: 10.1039/C8TA01293H
    [9]
    Y.T. Wen, T.R. Yang, D. Lee, H.N. Lee, E.J. Crumlin, and K. Huang, Temporal and thermal evolutions of surface Sr-segregation in pristine and atomic layer deposition modified La0.6Sr0.4CoO3− δ epitaxial films, J. Mater. Chem. A, 6(2018), No. 47, p. 24378. doi: 10.1039/C8TA08355J
    [10]
    F.F. Wang, H. Kishimoto, T. Ishiyama, et al., A review of sulfur poisoning of solid oxide fuel cell cathode materials for solid oxide fuel cells, J. Power Sources, 478(2020), art. No. 228763. doi: 10.1016/j.jpowsour.2020.228763
    [11]
    J. Hong, M.R. Anisur, S.J. Heo, P.K. Dubey, and P. Singh, Sulfur poisoning and performance recovery of SOFC air electrodes, Front. Energy Res., 9(2021), art. No. 643431. doi: 10.3389/fenrg.2021.643431
    [12]
    R.R. Liu, S. Taniguchi, Y. Shiratori, K. Ito, and K. Sasaki, Influence of SO2 on the long-term durability of SOFC cathodes, ECS Trans., 35(2011), No. 1, p. 2255. doi: 10.1149/1.3570221
    [13]
    E. Bucher, C. Gspan, and W. Sitte, Degradation and regeneration of the SOFC cathode material La0.6Sr0.4CoO3− δ in SO2-containing atmospheres, Solid State Ionics, 272(2015), p. 112. doi: 10.1016/j.ssi.2015.01.009
    [14]
    F. Wang, K. Yamaji, D.H. Cho, et al., Evaluation of sulfur dioxide poisoning for LSCF cathodes, Fuel Cells, 13(2013), No. 4, p. 520. doi: 10.1002/fuce.201200172
    [15]
    T. Daio, P. Mitra, S.M. Lyth, and K. Sasaki, Atomic-resolution analysis of degradation phenomena in SOFCS: A case study of SO2 poisoning in LSM cathodes, Int. J. Hydrogen Energy, 41(2016), No. 28, p. 12214. doi: 10.1016/j.ijhydene.2016.05.216
    [16]
    R. Wang, L.R. Parent, S. Gopalan, and Y. Zhong, Experimental and computational investigations on the SO2 poisoning of (La0.8Sr0.2)0.95MnO3 cathode materials, Adv. Powder Mater., 2(2023), No. 1, art. No. 100062. doi: 10.1016/j.apmate.2022.100062
    [17]
    J.A. Schuler, H. Yokokawa, C.F. Calderone, et al., Combined Cr and S poisoning in solid oxide fuel cell cathodes, J. Power Sources, 201(2012), p. 112. doi: 10.1016/j.jpowsour.2011.10.123
    [18]
    C.H. Bartholomew, P.K. Agrawal, and J.R. Katzer, Sulfur poisoning of metals, Adv. Catal., 31(1982), p. 135.
    [19]
    S.W. Zha, Z. Cheng, and M.L. Liu, Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells, J. Electrochem. Soc., 154(2007), No. 2, p. B201. doi: 10.1149/1.2404779
    [20]
    J.G. McCarty and H. Wise, Thermodynamics of sulfur chemisorption on metals. I. Alumina-supported nickel, J. Chem. Phys., 72(1980), No. 12, p. 6332. doi: 10.1063/1.439156
    [21]
    M. Yamada, H. Hirashima, A. Kitada, K.I. Izumi, and J. Nakamura, Three-Ni-atom cluster formed by sulfur adsorption on Ni(111), Surf. Sci., 602(2008), No. 9, p. 1659. doi: 10.1016/j.susc.2008.02.033
    [22]
    G.A. Sargent, G.B. Freeman, and J.L.R. Chao, Adsorption of CO on, and S poisoning of, a perfect Ni(111) single crystal and a Ni(111) crystal with small angle boundaries, Surf. Sci., 100(1980), No. 2, p. 342. doi: 10.1016/0039-6028(80)90377-5
    [23]
    C.C. Xu, J.W. Zondlo, H.O. Finklea, O. Demircan, M.Y. Gong, and X.B. Liu, The effect of phosphine in syngas on Ni–YSZ anode-supported solid oxide fuel cells, J. Power Sources, 193(2009), No. 2, p. 739. doi: 10.1016/j.jpowsour.2009.04.044
    [24]
    C.C. Xu, J.W. Zondlo, M.Y. Gong, and X.B. Liu, Effect of PH3 poisoning on a Ni–YSZ anode-supported solid oxide fuel cell under various operating conditions, J. Power Sources, 196(2011), No. 1, p. 116. doi: 10.1016/j.jpowsour.2010.07.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Share Article

    Article Metrics

    Article Views(340) PDF Downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return