Cite this article as: |
Bo Lin, Jingzhong Kuang, Yiqiang Yang, Zheyu Huang, Delong Yang, and Mingming Yu, Synergistic strengthening mechanism of Ca2+–sodium silicate to selective separation of feldspar and quartz, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1985-1995. https://doi.org/10.1007/s12613-023-2790-7 |
Jingzhong Kuang E-mail: kjz692@163.com
[1] |
T. Minami, S. Maeda, M. Higasa, and K. Kashima, In-situ observation of bubble formation at silicon melt-silica glass interface, J. Cryst. Growth, 318(2011), No. 1, p. 196. doi: 10.1016/j.jcrysgro.2010.10.075
|
[2] |
M.F.M. Santos, E. Fujiwara, E.A. Schenkel, J. Enzweiler, and C.K. Suzuki, Processing of quartz lumps rejected by silicon industry to obtain a raw material for silica glass, Int. J. Miner. Process., 135(2015), p. 65. doi: 10.1016/j.minpro.2015.02.002
|
[3] |
S.Y. Lin, R.Q. Liu, Y.H. Hu, et al., Optimize flotation process of Mo–Bi sulfide ore for cleaner production, J. Cleaner Prod., 291(2021), art. No. 125236. doi: 10.1016/j.jclepro.2020.125236
|
[4] |
Z.Q. Huang, S.Y. Zhang, C. Cheng, et al., Recycling lepidolite from tantalum–niobium mine tailings by a combined magnetic-flotation process using a novel gemini surfactant: From tailings dams to the “bling” raw material of lithium, ACS Sustainable Chem. Eng., 8(2020), No. 49, p. 18206. doi: 10.1021/acssuschemeng.0c06609
|
[5] |
B. Yang, S.H. Cao, Z.L. Zhu, et al., Selective flotation separation of apatite from dolomite utilizing a novel eco-friendly and efficient depressant for sustainable manufacturing of phosphate fertilizer, J. Cleaner Prod., 286(2021), art. No. 124949. doi: 10.1016/j.jclepro.2020.124949
|
[6] |
Z.J. Wang, H.Q. Wu, Y.B. Xu, et al., Effect of dissolved fluorite and barite species on the flotation and adsorption behavior of bastnaesite, Sep. Purif. Technol., 237(2020), art. No. 116387. doi: 10.1016/j.seppur.2019.116387
|
[7] |
L.H. Xu, J. Tian, H.Q. Wu, Z.Y. Lu, W. Sun, and Y.H. Hu, The flotation and adsorption of mixed collectors on oxide and silicate minerals, Adv. Colloid Interface Sci., 250(2017), p. 1. doi: 10.1016/j.cis.2017.11.003
|
[8] |
B.B. Luo, Y.M, Zhu, C.Y. Sun, Y.J Li, and Y.X. Han, The flotation behavior and adsorption mechanisms of 2-((2-(decyloxy)ethyl)amino)lauric acid on quartz surface, Miner. Eng., 117(2018), p. 121. doi: 10.1016/j.mineng.2017.12.016
|
[9] |
D.J. McKee, Automatic flotation control-A review of 20 years of effort, Miner. Eng., 4(1991), No. 7-11, p. 653. doi: 10.1016/0892-6875(91)90055-Z
|
[10] |
E. Larsen and R.A. Kleiv, Flotation of quartz from quartz-feldspar mixtures by the HF method, Miner. Eng., 98(2016), p. 49. doi: 10.1016/j.mineng.2016.07.021
|
[11] |
E. Larsen, P.B. Kowalczuk, and R.A. Kleiv, Non-HF collectorless flotation of quartz, Miner. Eng., 133(2019), p. 115. doi: 10.1016/j.mineng.2019.01.014
|
[12] |
M.S. El-Salmawy, Y. Nakahiro, and T. Wakamatsu, The role of alkaline earth cations in flotation separation of quartz from feldspar, Miner. Eng., 6(1993), No. 12, p. 1231. doi: 10.1016/0892-6875(93)90101-R
|
[13] |
Y.C. Liu, H.G. Gong, and K.R. Zhang, Adsorption of sodlim oleate and dodecyl amine hydrochloride on feldspar and quartz, Min. Metall. Eng.,13(1993), No. 2, p. 27.
|
[14] |
X.S. Jiang, J. Chen, B.Y. Ban, W.F. Song, C. Chen, and X.Y. Yang, Application of competitive adsorption of ethylenediamine and polyetheramine in direct float of quartz from quartz–feldspar mixed minerals under neutral pH conditions, Miner. Eng., 188(2020), art. No. 107850.
|
[15] |
N. Tan, S.F. Han, D.D. Wu, K.X. Wei, and W.H. Ma, Recovery of siliconfrom metallurgical-grade silicon-refined slag by flotation with sodium silicate as depressant, Trans. Nonferrous Met. Soc. China, 33(2023), No. 5, p. 1619. doi: 10.1016/S1003-6326(23)66208-9
|
[16] |
A. Molifie, M. Becker, S. Geldenhuys, and B. McFadzean, Investigating the reasons for the improvement in flotation grade and recovery of an altered PGE ore when using sodium silicate, Miner. Eng., 195(2023), art. No. 108024. doi: 10.1016/j.mineng.2023.108024
|
[17] |
G.H. Ai, W.F. Huang, X.L. Yang, and X.B. Li, Effect of collector and depressant on monomineralic surfaces in fine wolframite flotation system, Sep. Purif. Technol., 176(2017), p. 59. doi: 10.1016/j.seppur.2016.11.064
|
[18] |
L.H. Xu, H.Q. Wu, F.Q. Dong, L. Wang, Z. Wang, and J.H. Xiao, Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica, Miner. Eng., 41(2013), p. 41. doi: 10.1016/j.mineng.2012.10.015
|
[19] |
J.F. He, H. Chen, M.M. Zhang, et al., Combined inhibitors of Fe3+, Cu2+ or Al3+ and sodium silicate on the flotation of fluorite and quartz, Colloids Surf. A, 643(2022), art. No. 128702. doi: 10.1016/j.colsurfa.2022.128702
|
[20] |
Q.C Feng, S.M. Wen, W.J. Zhao, and Y. Chen, Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation, Sep. Purif. Technol., 200(2018), p. 300. doi: 10.1016/j.seppur.2018.02.048
|
[21] |
G.C. Gong, P. Wang, J. Liu, Y.X. Han, and Y.M. Zhu, Effect and mechanism of Cu(II) on flotation separation of cassiterite from fluorite, Sep. Purif. Technol., 238(2020), art. No. 116401. doi: 10.1016/j.seppur.2019.116401
|
[22] |
P.M.S. Carvalho, S. Pessanha, J. Machado, et al., Energy dispersive X-ray fluorescence quantitative analysis of biological samples with the external standard method, Spectrochim. Acta, Part B, 174(2020), art. No. 105991. doi: 10.1016/j.sab.2020.105991
|
[23] |
N.R. Yang, Test Methods for Inorganic Nonmetallic Materials, Wuhan University of Technology Press, Wuhan, 1990, p. 77.
|
[24] |
S.Y. Zhang, J.Z. Kuang, M.M. Yu, W.Q. Yuan, and Z.Y. Huang, Effect of ultrasonication of sodium silicate on selective adsorption of scheelite and fluorite surfaces, Colloids Surf. A, 642(2022), art. No. 128633. doi: 10.1016/j.colsurfa.2022.128633
|
[25] |
W.J. Liu, S.Q. Zhang, W.Q. Wang, et al., The effects of Ca(II) and Mg(II) ions on the flotation of spodumene using NaOL, Miner. Eng., 79(2015), p. 40. doi: 10.1016/j.mineng.2015.05.008
|
[26] |
Y. Guo, B. Yang, Z.K. Fu, and S.L. Ren, Enhancing the floatability of smithsonite mixed with silicate minerals by using a novel dispersant of cetylpyridinium bromide, Miner. Eng., 185(2022), art. No. 107711. doi: 10.1016/j.mineng.2022.107711
|
[27] |
W. Zhang, R.Q. Honaker, and J.G. Groppo, Flotation of monazite in the presence of calcite part I: Calcium ion effects on the adsorption of hydroxamic acid, Miner. Eng., 100(2017), p. 40. doi: 10.1016/j.mineng.2016.09.020
|
[28] |
Z. Cao, Z.Y. Cheng, J.L. Wang, and Y.D. Cao, Synergistic depression mechanism of Ca2+ ions and sodium silicate on bastnaesite flotation, J. Rare Earths, 40(2022), No. 6, p. 988. doi: 10.1016/j.jre.2021.04.006
|
[29] |
J. Tian, L.H. Xu, W. Deng, H. Jiang, Z.Y. Gao, and Y.H. Hu, Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system, Chem. Eng. Sci., 164(2017), p. 99. doi: 10.1016/j.ces.2017.02.013
|
[30] |
B.B. Luo, Y.M. Zhu, C.Y. Sun, Y.J. Li, and Y.X. Han, Flotation and adsorption of a new collector α-Bromodecanoic acid on quartz surface, Miner. Eng., 77(2015), p. 86. doi: 10.1016/j.mineng.2015.03.003
|
[31] |
R.Q. Xie, Y.M. Zhu, J. Liu, X. Wang, and Y.J. Li, Differential collecting performance of a new complex of decyloxy-propyl-amine and α-bromododecanoic acid on flotation of spodumene and feldspar, Miner. Eng., 153(2020), art. No. 106377. doi: 10.1016/j.mineng.2020.106377
|
[32] |
L.O. Filippov, V.V. Severov, and I.V. Filippova, Mechanism of starch adsorption on Fe–Mg–Al-bearing amphiboles, Int. J. Miner. Process., 123(2013), p. 120. doi: 10.1016/j.minpro.2013.05.010
|
[33] |
Y.F. Wang, S. Ahmed Khoso, X.M. Luo, and M.J. Tian, Understanding the depression mechanism of citric acid in sodium oleate flotation of Ca2+-activated quartz: Experimental and DFT study, Miner. Eng., 140(2019), art. No. 105878. doi: 10.1016/j.mineng.2019.105878
|