Qicheng Feng, Wanming Lu, Han Wang,  and Qian Zhang, Mechanistic insights into stepwise activation of malachite for enhancing surface reactivity and flotation performance, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2159-2172. https://doi.org/10.1007/s12613-023-2793-4
Cite this article as:
Qicheng Feng, Wanming Lu, Han Wang,  and Qian Zhang, Mechanistic insights into stepwise activation of malachite for enhancing surface reactivity and flotation performance, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2159-2172. https://doi.org/10.1007/s12613-023-2793-4
Research Article

Mechanistic insights into stepwise activation of malachite for enhancing surface reactivity and flotation performance

+ Author Affiliations
  • Corresponding authors:

    Han Wang    E-mail: wanghankmust@126.com

    Qian Zhang    E-mail: zqian9865@163.com

  • Received: 30 August 2023Revised: 9 November 2023Accepted: 22 November 2023Available online: 25 November 2023
  • Malachite is a common copper oxide mineral that is often enriched using the sulfidization–xanthate flotation method. Currently, the direct sulfidization method cannot yield copper concentrate products. Therefore, a new sulfidization flotation process was developed to promote the efficient recovery of malachite. In this study, Cu2+ was used as an activator to interact with the sample surface and increase its reaction sites, thereby strengthening the mineral sulfidization process and reactivity. Compared to single copper ion activation, the flotation effect of malachite significantly increased after stepwise Cu2+ activation. Zeta potential, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF–SIMS), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS), and atomic force microscopy (AFM) analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu2+ stepwise activation. Meanwhile, the proportion of active Cu–S species also increased, further improving the reaction between the sample surface and subsequent collectors. Fourier-transform infrared spectroscopy (FT-IR) and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu2+ stepwise activation, thereby improving the hydrophobicity of the mineral surface. Therefore, the copper sites on the malachite surface after Cu2+ stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.
  • loading
  • [1]
    Z.G. Yin, W. Sun, Y.H. Hu, C.H. Zhang, Q.J. Guan, and K.P. Wu, Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests, J. Cleaner Prod., 171(2018), p. 1039. doi: 10.1016/j.jclepro.2017.10.020
    [2]
    Z.H. Shen, S.M. Wen, H. Wang, et al., Effect of dissolved components of malachite and calcite on surface properties and flotation behavior, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1297. doi: 10.1007/s12613-023-2606-9
    [3]
    Q.C. Feng, W.H. Yang, S.M. Wen, H. Wang, W.J. Zhao, and G. Han, Flotation of copper oxide minerals: A review, Int. J. Min. Sci. Technol., 32(2022), No. 6, p. 1351. doi: 10.1016/j.ijmst.2022.09.011
    [4]
    G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1117. doi: 10.1016/j.ijmst.2021.11.001
    [5]
    G.P.W. Suyantara, T. Hirajima, H. Miki, K. Sasaki, S. Kuroiwa, and Y. Aoki, Effect of H2O2 and potassium amyl xanthate on separation of enargite and tennantite from chalcopyrite and bornite using flotation, Miner. Eng., 152(2020), art. No. 106371. doi: 10.1016/j.mineng.2020.106371
    [6]
    R.Z. Liu, D.W. Liu, J.L. Li, et al., Improved understanding of the sulfidization mechanism in cerussite flotation: An XPS, ToF-SIMS and FESEM investigation, Colloids Surf., A, 595(2020), art. No. 124508. doi: 10.1016/j.colsurfa.2020.124508
    [7]
    X.R. Zhang, L. Lu, Y.H. Li, Y.G. Zhu, L. Han, and C.B. Li, Flotation separation performance of malachite from calcite with new chelating collector and its adsorption mechanism, Sep. Purif. Technol., 255(2021), art. No. 117732. doi: 10.1016/j.seppur.2020.117732
    [8]
    Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150. doi: 10.1007/s12613-021-2379-y
    [9]
    R.Z. Liu, D.W. Liu, J.L. Li, et al., Sulfidization mechanism in malachite flotation: A heterogeneous solid-liquid reaction that yields Cu xS y phases grown on malachite, Miner. Eng., 154(2020), art. No. 106420. doi: 10.1016/j.mineng.2020.106420
    [10]
    L.Q. Li, J.H. Zhao, Y.Y. Xiao, et al., Flotation performance and adsorption mechanism of malachite with tert-butylsalicylaldoxime, Sep. Purif. Technol., 210(2019), p. 843. doi: 10.1016/j.seppur.2018.08.073
    [11]
    Y.F. Fu, Y. Hou, R. Wang, et al., Detailed insights into improved chlorite removal during hematite reverse flotation by sodium alginate, Miner. Eng., 173(2021), art. No. 107191. doi: 10.1016/j.mineng.2021.107191
    [12]
    G. Önal, G. Bulut, A. Gül, O. Kangal, K.T. Perek, and F. Arslan, Flotation of Aladağ oxide lead–zinc ores, Miner. Eng., 18(2005), No. 2, p. 279. doi: 10.1016/j.mineng.2004.10.018
    [13]
    Q.C. Feng, S.M. Wen, W.J. Zhao, J.S. Deng, and Y.J. Xian, Adsorption of sulfide ions on cerussite surfaces and implications for flotation, Appl. Surf. Sci., 360(2016), p. 365. doi: 10.1016/j.apsusc.2015.11.035
    [14]
    Q.C. Feng, W.J. Zhao, and S.M. Wen, Surface modification of malachite with ethanediamine and its effect on sulfidization flotation, Appl. Surf. Sci., 436(2018), p. 823. doi: 10.1016/j.apsusc.2017.12.113
    [15]
    K. Park, S. Park, J. Choi, G. Kim, M.P. Tong, and H. Kim, Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector, Sep. Purif. Technol., 168(2016), p. 1. doi: 10.1016/j.seppur.2016.04.053
    [16]
    Q. Zhang, S.M. Wen, Q.C. Feng, and J.B. Liu, Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species, Appl. Surf. Sci., 543(2021), art. No. 148795. doi: 10.1016/j.apsusc.2020.148795
    [17]
    H. Wang, S.M. Wen, G. Han, and Q.C. Feng, Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation, Appl. Surf. Sci., 550(2021), art. No. 149350. doi: 10.1016/j.apsusc.2021.149350
    [18]
    Q. Zhang, S.M. Wen, Q.C. Feng, and Y.C. Miao, Adsorption characteristics of Cu2+ species on cerussite surfaces and implications for sulfidization flotation, Sep. Purif. Technol., 282(2022), art. No. 120109. doi: 10.1016/j.seppur.2021.120109
    [19]
    Q. Zhang, S.M. Wen, and Q.C. Feng, Effect of CuSO4 on sulfidized cerussite surface properties and its response to the flotation behavior, Appl. Surf. Sci., 589(2022), art. No. 152956. doi: 10.1016/j.apsusc.2022.152956
    [20]
    J.S. Dong, Q.J. Liu, L. Yu, and S.H. Subhonqulov, Activation mechanism of copper ion in arsenopyrite flotation in high pH value, Miner. Eng., 179(2022), art. No. 107465. doi: 10.1016/j.mineng.2022.107465
    [21]
    H. Wang, S.M. Wen, G. Han, Y.X. He, and Q.C. Feng, Adsorption behavior and mechanism of copper ions in the sulfidization flotation of malachite, Int. J. Min. Sci. Technol., 32(2022), No. 4, p. 897. doi: 10.1016/j.ijmst.2022.06.006
    [22]
    W.J. Zhao, B. Yang, Y.H. Yi, Q.C. Feng, and D.W. Liu, Synergistic activation of smithsonite with copper-ammonium species for enhancing surface reactivity and xanthate adsorption, Int. J. Min. Sci. Technol., 33(2023), No. 4, p. 519. doi: 10.1016/j.ijmst.2023.03.001
    [23]
    X.Y. Cao, C.Y. Liu, X.P. Huang, et al., Uncovering the flotation performance and adsorption mechanism of a multifunctional thiocarbamate collector on malachite, Powder Technol., 407(2022), art. No. 117676. doi: 10.1016/j.powtec.2022.117676
    [24]
    Y.X. Lu, K.J. Wu, S. Wang, Z.F. Cao, X. Ma, and H. Zhong, Structural modification of hydroxamic acid collectors to enhance the flotation performance of malachite and associated mechanism, J. Mol. Liq., 344(2021), art. No. 117959. doi: 10.1016/j.molliq.2021.117959
    [25]
    H. Wang, S.M. Wen, G. Han, and Q.C. Feng, Interaction mechanism of copper ions with the surface of sulfidized malachite and its response to flotation, Colloids Surf. A: Physicochem. Eng. Aspects, 647(2022), art. No. 129127. doi: 10.1016/j.colsurfa.2022.129127
    [26]
    Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Copper sulfide species formed on malachite surfaces in relation to flotation, J. Ind. Eng. Chem., 48(2017), p. 125. doi: 10.1016/j.jiec.2016.12.029
    [27]
    Z.L. Li, F. Rao, S.X. Song, A. Uribe-Salas, and A. López-Valdivieso, Effects of common ions on adsorption and flotation of malachite with salicylaldoxime, Colloids Surf. A Physicochem. Eng. Aspects, 577(2019), p. 421. doi: 10.1016/j.colsurfa.2019.06.004
    [28]
    C.W. Wang, L. Sun, Q.Q. Wang, et al., Adsorption mechanism and flotation behavior of ammonium salt of N-Nitroso-N-phenylhydroxyamine on malachite mineral, Appl. Surf. Sci., 583(2022), art. No. 152489. doi: 10.1016/j.apsusc.2022.152489
    [29]
    G.Y. Liu, Y.G. Huang, X.Y. Qu, J.J. Xiao, X.L. Yang, and Z.H. Xu, Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation, Colloids Surf., A, 503(2016), p. 34. doi: 10.1016/j.colsurfa.2016.05.028
    [30]
    P.L. Shen, D.W. Liu, X.L. Zhang, X.D. Jia, K.W. Song, and D. Liu, Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite, Miner. Eng., 137(2019), p. 43. doi: 10.1016/j.mineng.2019.03.015
    [31]
    Q. Zuo, J. Yang, Y.F. Shi, and D.D. Wu, Use of sodium sulfosalicylate as an activator in hemimorphite sulfidation xanthate flotation, Colloids Surf. A, 641(2022), art. No. 128552. doi: 10.1016/j.colsurfa.2022.128552
    [32]
    Q.Y. Sheng, B. Yang, S.H. Cao, et al., Adsorption of cupferron on malachite (−201) surface and implication for flotation, Miner. Eng., 169(2021), art. No. 106954. doi: 10.1016/j.mineng.2021.106954
    [33]
    B. Yang, Y.F. Fu, W.Z. Yin, Q.Y. Sheng, Z.L. Zhu, and X.M. Yin, Selective collection performance of an efficient quartz collector and its response to flotation separation of malachite from quartz, Miner. Eng., 172(2021), art. No. 107174. doi: 10.1016/j.mineng.2021.107174
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(582) PDF Downloads(32) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return