Cite this article as: |
Qijing Guo, Cong Guo, Hao Yi, Feifei Jia, and Shaoxian Song, Vertically aligned montmorillonite aerogel–encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 907-916. https://doi.org/10.1007/s12613-023-2794-3 |
Hao Yi E-mail: yihao287@whut.edu.cn
Shaoxian Song E-mail: ssx821215@whut.edu.cn
[1] |
K. Pielichowska and K. Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci., 65(2014), p. 67. doi: 10.1016/j.pmatsci.2014.03.005
|
[2] |
L.S. Tang, J. Yang, R.Y. Bao, et al., Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide, Energy Convers. Manage., 146(2017), p. 253. doi: 10.1016/j.enconman.2017.05.037
|
[3] |
Z.D. Tang, H.Y. Gao, X. Chen, Y.F. Zhang, A. Li, and G. Wang, Advanced multifunctional composite phase change materials based on photo-responsive materials, Nano Energy, 80(2021), art. No. 105454. doi: 10.1016/j.nanoen.2020.105454
|
[4] |
H.Y. Wu, S.T. Li, Y.W. Shao, et al., Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability, Chem. Eng. J., 379(2020), art. No. 122373. doi: 10.1016/j.cej.2019.122373
|
[5] |
Q.J. Guo, H. Yi, F.F. Jia, and S.X. Song, Design of MoS2/MMT bi-layered aerogels integrated with phase change materials for sustained and efficient solar desalination, Desalination, 541(2022), art. No. 116028. doi: 10.1016/j.desal.2022.116028
|
[6] |
B.Y. Gong, H.C. Yang, S.H. Wu, et al., Phase change material enhanced sustained and energy-efficient solar-thermal water desalination, Appl. Energy, 301(2021), art. No. 117463. doi: 10.1016/j.apenergy.2021.117463
|
[7] |
S. Aghakhani, A. Ghaffarkhah, M. Arjmand, N. Karimi, and M. Afrand, Phase change materials: Agents towards energy performance improvement in inclined, vertical, and horizontal walls of residential buildings, J. Build. Eng., 56(2022), art. No. 104656. doi: 10.1016/j.jobe.2022.104656
|
[8] |
S.R.L. da Cunha and J.L.B. de Aguiar, Phase change materials and energy efficiency of buildings: A review of knowledge, J. Energy Storage, 27(2020), art. No. 101083. doi: 10.1016/j.est.2019.101083
|
[9] |
Q.R. Zhang, T.T. Xue, J. Tian, Y. Yang, W. Fan, and T.X. Liu, Polyimide/boron nitride composite aerogel fiber-based phase-changeable textile for intelligent personal thermoregulation, Compos. Sci. Technol., 226(2022), art. No. 109541. doi: 10.1016/j.compscitech.2022.109541
|
[10] |
K.Y. Sun, H.S. Dong, Y. Kou, et al., Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications, Chem. Eng. J., 419(2021), art. No. 129637. doi: 10.1016/j.cej.2021.129637
|
[11] |
Y. Lu, X.D. Xiao, J. Fu, et al., Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning, Chem. Eng. J., 355(2019), p. 532. doi: 10.1016/j.cej.2018.08.189
|
[12] |
X.C. Wang, G.Y. Li, G. Hong, Q. Guo, and X.T. Zhang, Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices, ACS Appl. Mater. Interfaces, 9(2017), No. 47, p. 41323. doi: 10.1021/acsami.7b13969
|
[13] |
J. Luo, D.Q. Zou, Y.S. Wang, S. Wang, and L. Huang, Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review, Chem. Eng. J., 430(2022), art. No. 132741. doi: 10.1016/j.cej.2021.132741
|
[14] |
J. Shon, H. Kim, and K. Lee, Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger, Appl. Energy, 113(2014), p. 680. doi: 10.1016/j.apenergy.2013.07.049
|
[15] |
S. Gong, X.L. Li, M.J. Sheng, et al., High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery, ACS Appl. Mater. Interfaces, 13(2021), No. 39, p. 47174. doi: 10.1021/acsami.1c15670
|
[16] |
H. Nazir, M. Batool, F.J.B. Osorio, et al., Recent developments in phase change materials for energy storage applications: A review, Int. J. Heat Mass Transf., 129(2019), p. 491. doi: 10.1016/j.ijheatmasstransfer.2018.09.126
|
[17] |
D.C. Gao, Y.J. Sun, A.M. Fong, and X.B. Gu, Mineral-based form-stable phase change materials for thermal energy storage: A state-of-the art review, Energy Storage Mater., 46(2022), p. 100. doi: 10.1016/j.ensm.2022.01.003
|
[18] |
D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
|
[19] |
C.C. Li, X.K. Peng, J.J. He, and J. Chen, Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1835. doi: 10.1007/s12613-023-2627-4
|
[20] |
T.T. Qian, J.H. Li, X. Min, Y. Deng, W.M. Guan, and L. Ning, Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material, Energy Convers. Manage., 98(2015), p. 34. doi: 10.1016/j.enconman.2015.03.071
|
[21] |
M. Li and Z.S. Wu, A review of intercalation composite phase change material: Preparation, structure and properties, Renewable Sustainable Energy Rev., 16(2012), No. 4, p. 2094. doi: 10.1016/j.rser.2012.01.016
|
[22] |
P.Z. Lv, C.Z. Liu, and Z.H. Rao, Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications, Renewable Sustainable Energy Rev., 68(2017), p. 707. doi: 10.1016/j.rser.2016.10.014
|
[23] |
M. Li, Z.S. Wu, H.T. Kao, and J.M. Tan, Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material, Energy Convers. Manage., 52(2011), No. 11, p. 3275. doi: 10.1016/j.enconman.2011.05.015
|
[24] |
J. Giro-Paloma, M. Martínez, L.F. Cabeza, and A. Inés Fernández, Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review, Renewable Sustainable Energy Rev., 53(2016), p. 1059.
|
[25] |
G. Alva, Y.X. Lin, L.K. Liu, and G.Y. Fang, Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review, Energy Build., 144(2017), p. 276. doi: 10.1016/j.enbuild.2017.03.063
|
[26] |
H. Yi, W.Q. Zhan, Y.L. Zhao, et al., A novel core–shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties, Sol. Energy Mater. Sol. Cells, 192(2019), p. 57. doi: 10.1016/j.solmat.2018.12.015
|
[27] |
Z. Sun, L.J. Zhao, H.X. Wan, H. Liu, D.Z. Wu, and X.D. Wang, Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors, Chem. Eng. J., 396(2020), art. No. 125317. doi: 10.1016/j.cej.2020.125317
|
[28] |
Z. Zhang, Z. Zhang, T. Chang, J. Wang, X. Wang, and G.F. Zhou, Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in situ polymerization, Chem. Eng. J., 428(2022), art. No. 131164. doi: 10.1016/j.cej.2021.131164
|
[29] |
P. Liu, X. Chen, Y. Li, et al., Aerogels meet phase change materials: Fundamentals, advances, and beyond, ACS Nano, 16(2022), No. 10, p. 15586. doi: 10.1021/acsnano.2c05067
|
[30] |
S. Kashyap, S. Kabra, and B. Kandasubramanian, Graphene aerogel-based phase changing composites for thermal energy storage systems, J. Mater. Sci., 55(2020), No. 10, p. 4127. doi: 10.1007/s10853-019-04325-7
|
[31] |
H. Yi, Z. Ai, Y.L. Zhao, X. Zhang, and S.X. Song, Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage, Sol. Energy Mater. Sol. Cells, 204(2020), art. No. 110233. doi: 10.1016/j.solmat.2019.110233
|
[32] |
H.Z. Hong, Y. Pan, H.X. Sun, et al., Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 174(2018), p. 307. doi: 10.1016/j.solmat.2017.09.026
|
[33] |
M. Cheng, J. Hu, J.Q. Xia, et al., One-step in situ green synthesis of cellulose nanocrystal aerogel based shape stable phase change material, Chem. Eng. J., 431(2022), art. No. 133935. doi: 10.1016/j.cej.2021.133935
|
[34] |
Q.J. Guo, Q. An, H. Yi, F.F. Jia, and S.X. Song, Double-layered montmorillonite/MoS2 aerogel with vertical channel for efficient and stable solar interfacial desalination, Appl. Clay Sci., 217(2022), art. No. 106389. doi: 10.1016/j.clay.2021.106389
|
[35] |
D.Y. Liu, C.X. Lei, K. Wu, and Q. Fu, A multidirectionally thermoconductive phase change material enables high and durable electricity via real-environment solar-thermal-electric conversion, ACS Nano, 14(2020), No. 11, p. 15738. doi: 10.1021/acsnano.0c06680
|
[36] |
R.I. Iliescu, E. Andronescu, C.D. Ghitulica, G. Voicu, A. Ficai, and M. Hoteteu, Montmorillonite-alginate nanocomposite as a drug delivery system: Incorporation and in vitro release of irinotecan, Int. J. Pharm., 463(2014), No. 2, p. 184. doi: 10.1016/j.ijpharm.2013.08.043
|
[37] |
A. Olad, M. Pourkhiyabi, H. Gharekhani, and F. Doustdar, Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: Reaction parameters and swelling characteristics, Carbohydr. Polym., 190(2018), p. 295. doi: 10.1016/j.carbpol.2018.02.088
|
[38] |
H. Yi, L. Xia, and S.X. Song, Three-dimensional montmorillonite/Ag nanowire aerogel supported stearic acid as composite phase change materials for superior solar-thermal energy harvesting and storage, Compos. Sci. Technol., 217(2022), art. No. 109121. doi: 10.1016/j.compscitech.2021.109121
|
[39] |
Q.J. Guo, H. Yi, F.F. Jia, and S.X. Song, Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators, Renewable Energy, 194(2022), p. 68. doi: 10.1016/j.renene.2022.05.051
|
[40] |
E.R. Kenawy, M.M. Azaam, and E.M. El-nshar, Sodium alginate-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate)/montmorillonite superabsorbent composite: Preparation, swelling investigation and its application as a slow-release fertilizer, Arab. J. Chem., 12(2019), No. 6, p. 847. doi: 10.1016/j.arabjc.2017.10.013
|
[41] |
E. Tao, D. Ma, S.Y. Yang, and X. Hao, Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater, J. Alloys Compd., 832(2020), art. No. 154833. doi: 10.1016/j.jallcom.2020.154833
|
[42] |
W. Wang, C.Y. Zhang, J.Y. He, et al., Chitosan-induced self-assembly of montmorillonite nanosheets along the end-face for methylene blue removal from water, Int. J. Biol. Macromol., 227(2023), p. 952. doi: 10.1016/j.ijbiomac.2022.12.206
|
[43] |
W. Wang, T. Wen, and H.Y. Bai, , Adsorption toward Cu(II) and inhibitory effect on bacterial growth occurring on molybdenum disulfide-montmorillonite hydrogel surface, Chemosphere, 248(2020), art. No. 126025. doi: 10.1016/j.chemosphere.2020.126025
|
[44] |
Y. Zhou, X.D. Liu, D.K. Sheng, et al., Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage, Chem. Eng. J., 338(2018), p. 117. doi: 10.1016/j.cej.2018.01.021
|
[45] |
Y. Zhou, D.K. Sheng, X.D. Liu, et al., Synthesis and properties of crosslinking halloysite nanotubes/polyurethane-based solid–solid phase change materials, Sol. Energy Mater. Sol. Cells, 174(2018), p. 84. doi: 10.1016/j.solmat.2017.08.031
|
[46] |
H.H. Liao, W.H. Chen, Y. Liu, and Q. Wang, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability, Compos. Sci. Technol., 189(2020), art. No. 108010. doi: 10.1016/j.compscitech.2020.108010
|
[47] |
T.T. Qian, J.H. Li, X. Min, W.M. Guan, Y. Deng, and L. Ning, Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage, J. Mater. Chem. A, 3(2015), No. 16, p. 8526. doi: 10.1039/C5TA00309A
|
[48] |
X. Chen, H.Y. Gao, M. Yang, et al., Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting, Nano Energy, 49(2018), p. 86. doi: 10.1016/j.nanoen.2018.03.075
|
[49] |
S.Y. Yu, X.D. Wang, and D.Z. Wu, Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation, Appl. Energy, 114(2014), p. 632. doi: 10.1016/j.apenergy.2013.10.029
|
[50] |
S.Y. Liu and H.M. Yang, Stearic acid hybridizing coal–series Kaolin composite phase change material for thermal energy storage, Appl. Clay Sci., 101(2014), p. 277. doi: 10.1016/j.clay.2014.09.002
|
[51] |
J.M.Gao, S.J. Ma, B. Wang, Z.B. Ma, Y.X. Guo, and F.Q. Cheng, Template-free facile preparation of mesoporous silica from fly ash for shaped composite phase change materials, J. Cleaner Prod., 384 (2023), art. No. 135583. doi: 10.1016/j.jclepro.2022.135583
|
[52] |
Y. Wang, Y.H. Song, S. Li, T. Zhang, D.Y. Zhang, and P.R. Guo, Thermophysical properties of three-dimensional palygorskite based composite phase change materials, Appl. Clay Sci., 184(2020), art. No. 105367. doi: 10.1016/j.clay.2019.105367
|
[53] |
H.T. Wei, X.Z. Xie, X.Q. Li, and X.S. Lin, Preparation and characterization of capric–myristic–stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material, Appl. Energy, 178(2016), p. 616. doi: 10.1016/j.apenergy.2016.06.109
|
[54] |
Y.F. Zhao, W.X. Kong, Z.L. Jin, et al., Storing solar energy within Ag–paraffin@Halloysite microspheres as a novel self-heating catalyst, Appl. Energy, 222(2018), p. 180. doi: 10.1016/j.apenergy.2018.04.013
|
[55] |
C.J. Han, H.Z. Gu, M.J. Zhang, A. Huang, Y. Zhang, and Y. Wang, Al–Si@Al2O3@mullite microcapsules for thermal energy storage: Preparation and thermal properties, Sol. Energy Mater. Sol. Cells, 217(2020), art. No. 110697. doi: 10.1016/j.solmat.2020.110697
|
[56] |
H. Yi, W.Q. Zhan, Y.L. Zhao, et al., Design of MtNS/SA microencapsulated phase change materials for enhancement of thermal energy storage performances: Effect of shell thickness, Sol. Energy Mater. Sol. Cells, 200(2019), art. No. 109935. doi: 10.1016/j.solmat.2019.109935
|
[57] |
A.M. Turan and Y. Konuklu, Developing of capric acid@colemanite doped melamine formaldehyde microcapsules and composites as novel thermal energy storage materials, Therm. Sci. Eng. Prog., 41(2023), art. No. 101806. doi: 10.1016/j.tsep.2023.101806
|
[58] |
L.Q. Wang, W.D. Liang, Y. Liu, et al., Carbonized clay pectin-based aerogel for light-to-heat conversion and energy storage, Appl. Clay Sci., 224 (2022), art. No. 106524. doi: 10.1016/j.clay.2022.106524
|
[59] |
J.H. Zhu, Q. An, Q.J. Guo, H. Yi, L. Xia, and S.X. Song, Mechanically strong hectorite aerogel encapsulated octadecane as shape-stabilized phase change materials for thermal energy storage and management, Appl. Clay Sci., 223(2022), art. No. 106511. doi: 10.1016/j.clay.2022.106511
|
[60] |
J.R. Li, L.H. He, T.Z. Liu, X.J. Cao, and H.Z. Zhu, Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells, 118(2013), p. 48. doi: 10.1016/j.solmat.2013.07.017
|
[61] |
B.M. Li, D. Shu, R.F. Wang, et al., Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage, Renewable Energy, 145(2020), p. 84. doi: 10.1016/j.renene.2019.05.118
|
[62] |
R.M. Nair, B. Bindhu, and V.L. Reena, A polymer blend from Gum Arabic and sodium alginate-preparation and characterization, J. Polym. Res., 27(2020), No. 6, art. No. 154. doi: 10.1007/s10965-020-02128-y
|
[63] |
T.M.M. Swamy, B. Ramaraj, and Siddaramaiah, Sodium alginate and poly(ethylene glycol) blends: Thermal and morphological behaviors, J. Macromol. Sci. Part A, 47(2010), No. 9, p. 877. doi: 10.1080/10601325.2010.501296
|