Cite this article as: |
Qiuping Li, Guanghua Wen, Fuhang Chen, Ping Tang, Zibing Hou, and Xinyun Mo, Irregular initial solidification by mold thermal monitoring in the continuous casting of steels: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1003-1015. https://doi.org/10.1007/s12613-023-2798-z |
Guanghua Wen E-mail: wengh@cqu.edu.cn
[1] |
S. Luo, Y.W. Yang, W.L. Wang, and M.Y. Zhu, Development of electromagnetic flow control technology for high speed casting mold, J. Mater. Metall., 22(2023), No. 1, p. 1.
|
[2] |
M.Y. Zhu, Some considerations for new generation of high-efficiency continuous casting technology development, Iron Steel, 54(2019), No. 8, p. 21.
|
[3] |
C. Bernhard, H. Hiebler, and M.M. Wolf, How fast can we cast? Ironmaking Steelmaking, 27(2000), No. 6, p. 450. doi: 10.1179/030192300677778
|
[4] |
W.W. Wolf, Strand surface quality and the peritectic reaction-A look into the basics, [in] Steelmaking Conference Proceedings, Toronto, 1988, p. 53.
|
[5] |
T. Xu, G. Song, Y. Yang, P.X. Ge, and L.X. Tang, Visualization and simulation of steel metallurgy processes, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1387. doi: 10.1007/s12613-021-2283-5
|
[6] |
J.K. Brimacombe and K. Sorimachi, Crack formation in the continuous casting of steel, Metall. Trans. B, 8(1977), No. 2, p. 489. doi: 10.1007/BF02696937
|
[7] |
B.G. Thomas, M.S. Jenkins, and R.B. Mahapatra, Investigation of strand surface defects using mould instrumentation and modelling, Ironmaking Steelmaking, 31(2004), No. 6, p. 485. doi: 10.1179/030192304225019261
|
[8] |
D. Stewart, P.N. Hewitt, and L.P Peter, Prediction of longitudinal cracks in slab continuous casting, [in] Proc. 79th Steelmaking Conf., Pittsburgh, PA, 1996, p. 207.
|
[9] |
L. Dirk, K. Artemy, R. Markus, S. Thomas, and K. Dieter, Bloom quality control using the fiber optical “HD mold” monitoring system, [in] Proc. 8th Eur. Continuous Casting Conf., Graz, 2014.
|
[10] |
C. Geerkens, J. Wans, L. Dirk, K. Artemy, and M. Klein, Special technologies and new developments to improve slab quality, [in] 46th Steelmaking Seminar International, Rio de Janeiro, 2015.
|
[11] |
P. Hooli, Study on the Layers in the Film Originating from the Casting Powder between Steel and Mold and Associated Phenomena in Continuous Casting of Stainless Steel [Dissertation], Helsinki University of Technology, Espoo, 2007, p. 60.
|
[12] |
W.W. Wolf, Initial solidification and strand surface quality of peritectic steels, [in] C.E. Slater, K.A. Catanzarite, W. Silvonic, M.A. Sample, and M.L. Rhone, eds., Continuous Casting, Vol. 9, The Iron and Steel Society, Warrendale, PA, 1997, p. 9.
|
[13] |
K.E. Blazek and I.G. Saucedo, Characterization of the formation, propagation, and recovery of sticker/hanger type breakouts, ISIJ Int., 30(1990), No. 6, p. 435. doi: 10.2355/isijinternational.30.435
|
[14] |
S. Itoyama, Y. Habu, K.I. Sorimachi, A. Kawaharada, and S. Yabe, Mechanism of formation and method of detection of breakout caused by sticking between mould and slab in continuous casting of steel, Tetsu-to-Hagané, 68(1982), No. 7, p. 784. doi: 10.2355/tetsutohagane1955.68.7_784
|
[15] |
C.Å. Däcker, Case study-mold powder, [in] Swerea KIMAB, Stockholm, 2003, p. 534.
|
[16] |
M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, and Y. Komatsu, Development of a new mold oscillation mode for high-speed continuous casting of steel slabs, ISIJ Int., 31(1991), No. 3, p. 254. doi: 10.2355/isijinternational.31.254
|
[17] |
H.J. Shin, S.H. Kim, B.G. Thomas, G.G. Lee, J.M. Park, and J. Sengupta, Measurement and prediction of lubrication, powder consumption, and oscillation mark profiles in ultra-low carbon steel slabs, ISIJ Int., 46(2006), No. 11, p. 1635. doi: 10.2355/isijinternational.46.1635
|
[18] |
M.H. Cao, Y.H. Liu, and X.Z. Zhang, Investigation on initial shell solidification and the effect of negative strip time on oscillation marks during continuous casting, Metals, 13(2023), No. 4, p. 726. doi: 10.3390/met13040726
|
[19] |
M.H. Cao, Y.H. Liu, B. Yu, C. Zhou, and X.Z. Zhang, Modeling study on the initial solidification and formation of oscillation marks in continuous casting mold, Trans. Indian Inst. Met., 77(2024), No. 1, p. 51. doi: 10.1007/s12666-023-03040-x
|
[20] |
P.E. Ramirez Lopez, K.C. Mills, P.D. Lee, and B. Santillana, A unified mechanism for the formation of oscillation marks, Metall. Mater. Trans. B, 43(2012), No. 1, p. 109. doi: 10.1007/s11663-011-9583-5
|
[21] |
Y.K. Deng, Y.B. Zhang, Q.Q. Wang, and Q. Wang, Study of mold oscillation parameters and modes on slag lubrication in slab continuous casting, JOM, 70(2018), No. 12, p. 2909. doi: 10.1007/s11837-018-3028-4
|
[22] |
C. Zhou, X.Z. Zhang, F. Wang, and S.B. Ren, Construction of nonsinusoidal oscillation waveform function and technological parameters for continuous casting mold, Complexity, 2020(2020), art. No. 4165689.
|
[23] |
J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim, A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs, Metall. Mater. Trans. A, 37(2006), No. 5, p. 1597. doi: 10.1007/s11661-006-0103-1
|
[24] |
J. Sengupta, H.J. Shin, B.G. Thomas, and S.H. Kim, Micrograph evidence of meniscus solidification and sub-surface microstructure evolution in continuous-cast ultralow-carbon steels, Acta Mater., 54(2006), No. 4, p. 1165. doi: 10.1016/j.actamat.2005.10.044
|
[25] |
H. Yamamura, Y. Mizukami, and K. Misawa, Formation of a solidified hook-like structure at the subsurface in ultra low carbon steel, ISIJ Int., 36(1996), p. S223. doi: 10.2355/isijinternational.36.Suppl_S223
|
[26] |
T.T. Li, J. Yang, F.X. Hung, K. Zhu, and X.W. Pei, Overview of formation mechanism and control technology of hooks in continuous casting slab, Steelmaking, 31(2021), No. 1, p. 44.
|
[27] |
E. Takeuchi and J.K. Brimacombe, Effect of oscillation-mark formation on the surface quality of continuously cast steel slabs, Metall. Trans. B, 16(1985), No. 3, p. 605. doi: 10.1007/BF02654859
|
[28] |
X.B. Zhang, W. Chen, P.R. Scheller, Y. Ren, and L.F. Zhang, Mathematical modeling of initial solidification and slag infiltration at the meniscus of slab continuous casting mold, JOM, 71(2019), No. 1, p. 78. doi: 10.1007/s11837-018-3177-5
|
[29] |
M.S. Jenkin and B.G. Thomas, An investigation of some mold powder related start-up problems, [in] Proc. 80th Steelmaking Conf., Chicago, 1997, p. 285.
|
[30] |
B. G. Thomas, D. Lui, and B. Ho, Effect of transverse depressions and oscillation marks on heat transfer in the continuous casting mold, [in] Proceedings of the 1997 TMS Annual Meeting, Orlando, 1997, p. 117.
|
[31] |
M.S. Jenkin, B.G. Thomas, W.C. Chen, and R.B. Mahapatra, [in] Proc. 77th Steelmaking Conf., Chicago, 1994, p. 337.
|
[32] |
F.H. Chen, G.H. Wen, P. Tang, et al., Optimization of mold powders for high-nitrogen stainless steel based on mold thermocouple temperature variation, Steel Res. Int., 94(2023), No. 11, art. No. 2300154. doi: 10.1002/srin.202300154
|
[33] |
J. Yu, H.C. Zhang, D.W. Deng, A. Iqbal, and S.Z. Hao, Simulation and experiment for crack arrest in remanufacturing, Int. J. Adv. Manuf. Technol., 87(2016), No. 5, p. 1547.
|
[34] |
Y. Meng and B.G. Thomas, Heat-transfer and solidification model of continuous slab casting: CON1D, Metall. Mater. Trans. B, 34(2003), No. 5, p. 685. doi: 10.1007/s11663-003-0040-y
|
[35] |
E.S. Pan, L. Ye, J.J. Shi, and T.S. Chang, On-line bleeds detection in continuous casting processes using engineering-driven rule-based algorithm, J. Manuf. Sci. Eng., 131(2009), No. 6, art. No. 061008. doi: 10.1115/1.4000560
|
[36] |
Q.H. Li, P. Lan, H.J. Wang, H.Z. Ai, D.L. Chen, and H.D. Wang, Formation and control of the surface defect in hypo-peritectic steel during continuous casting: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2281. doi: 10.1007/s12613-023-2716-4
|
[37] |
M.R. Ozgu and B. Kocatulum, Thermal analysis of the burns harbor No. 2 slab caster mold, Iron Steelmaker, 21(1994), No. 5, p. 77.
|
[38] |
R.M. McDavid and B.G. Thomas, Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds, Metall. Mater. Trans. B, 27(1996), No. 4, p. 672. doi: 10.1007/BF02915666
|
[39] |
Y. Li, X.H. Zhang, P. Lan, and J.Q. Zhang, Control of mould level fluctuation through the modification of steel composition, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 138. doi: 10.1007/s12613-013-0705-8
|
[40] |
A. Hajari and M. Meratian, Surface turbulence in a physical model of a steel thin slab continuous caster, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 697. doi: 10.1007/s12613-010-0376-7
|
[41] |
T. Zhang, J. Yang, G.J. Xu, H.J. Liu, J.J. Zhou, and W. Qin, Effects of operating parameters on the flow field in slab continuous casting molds with narrow widths, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 238. doi: 10.1007/s12613-020-1988-1
|
[42] |
A.S. Normanton, P.N. Hewitt, N.S. Hunter, D. Scoones, and B. Harris, Mould thermal monitoring: A window on the mould, Ironmaking Steelmaking, 31(2004), No. 5, p. 357. doi: 10.1179/030192304225019225
|
[43] |
A.S. Normanton, V. Ludlow, B. Harris, S. Riaz, and N.S. Hunter, Tools and techniques for use in development of mould powders, Ironmaking Steelmaking, 35(2008), No. 4, p. 283. doi: 10.1179/174328107X247798
|
[44] |
R.B. Mahapatra, J.K. Brimacombe, and I.V. Samarasekera, Mold behavior and its influence on quality in the continuous casting of steel slabs: Part II. Mold heat transfer, mold flux behavior, formation of oscillation marks, longitudinal off-corner depressions, and subsurface cracks, Metall. Trans. B, 22(1991), No. 6, p. 875. doi: 10.1007/BF02651164
|
[45] |
J. Watzinger, A. Pesek, N. Huebner, M. Pillwax, and O. Lang, MoldExpert–operational experience and future development, Ironmaking Steelmaking, 32(2005), No. 3, p. 208. doi: 10.1179/174328105X45848
|
[46] |
B.G. Thomas Modeling of the continuous casting of steel—Past, present, and future, Metall. Mater. Trans. B, 33(2002), No. 6, p. 795. doi: 10.1007/s11663-002-0063-9
|
[47] |
C.A.M. Pinheiro, I.V. Samarasekera, J.K. Brimacomb, and B.N. Walker, Mould heat transfer and continuously cast billet quality with mould flux lubrication Part 1 Mould heat transfer, Ironmaking Steelmaking, 27(2000), No. 1, p. 37. doi: 10.1179/030192300677363
|
[48] |
S. Zhu, Q.Y. Zhao, X.L. Li, Y. Liu, T.C. Li, and T.A. Zhang, Flow and penetration behavior of submerged side-blown gas, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1067. doi: 10.1007/s12613-022-2585-2
|
[49] |
M.N. Duan, C.B. Feng, J.H. Yang, W. Yuan, and Yang, K. Thermal and mechanical couple stress analysis of mould copper for slab continuous casting, Iron Steel, 43(2008), No. 5, p. 30.
|
[50] |
Z. Chen and H.Z. Qian, Finite element method anaysis of slab continuous casting mold heat, Shougang Sci. Tech., 5(2011), p. 5.
|
[51] |
G. Alvarez De Toledo, J. Ciriza, and J.J. Laraudogoitia, Abnormal transient phenomena in the continuous casting process: Part 1, Ironmaking Steelmaking, 30(2003), No. 5, p. 353. doi: 10.1179/030192303225004042
|
[52] |
L.L. Guo, X.D. Wang, H.Y. Zhan, M. Yao, and D.C. Fang, Mould heat transfer in the continuous casting of round billet, ISIJ Int., 47(2007), No. 8, p. 1108. doi: 10.2355/isijinternational.47.1108
|
[53] |
M. Yao, H.B. Yin, and D.C. Fang, Real-time analysis on non-uniform heat transfer and solidification in mould of continuous casting round billets, ISIJ Int., 44(2004), No. 10, p. 1696. doi: 10.2355/isijinternational.44.1696
|
[54] |
Y. Hashimoto, A. Matsui, T. Hayase, and M. Kano, Real-time estimation of molten steel flow in continuous casting mold, Metall. Mater. Trans. B, 51(2020), No. 2, p. 581. doi: 10.1007/s11663-020-01775-2
|
[55] |
T. Spierings, A. Kamperman, H. Hengeveld, J. Kromhout, and E. Dekker, Development and application of fiber bragg gratings for slab casting, [in] AISTech 2017 Proceedings of the Iron and Steel Technology Conferenc, Nashville, 2017.
|
[56] |
D. Lieftucht, M. Reifferscheid, T. Schramm, A. Krasilnikov, and D. Kirsch, HD Mold-a new fiber-optic-based mold monitoring system, Iron Steel Technol., 10(2013), No. 12, p. 87.
|
[57] |
G. Hedin, A. Kamperman, M. Sedén, K. Fröjdh, and J. Pejnefors, Exploring opportunities in mold temperature monitoring utilizing fiber bragg gratings, [in] Scan Met V Conference Proceedings, Swerea, 2016.
|
[58] |
M. Sedén, H. Yang, K. Frjdh, J. Pejnefors, and E. Dekker, Sensure dynamic mold flow control with FC mold and optimold monitors, [in] 9th ECCC, Vienna, 2017, p. 67.
|
[59] |
B.H. Zhang, H. Tekle, R.J. O’Malley, et al., In situ and real-time mold flux analysis using a high-temperature fiber-optic Raman sensor for steel manufacturing applications, J. Light. Technol., 41(2023), No. 13, p. 4419. doi: 10.1109/JLT.2023.3239428
|
[60] |
I. Mazza, S. Miani, G. Schiavon, and S. Spagnul, Contactless mold thermal mapping at meniscus through an innovative ultrasonic sensor, [in] Proceedings of ICS 2018, Venice, 2018.
|
[61] |
I. Mazza, S. Miani, G. Schiavon, and S. Spagnul, New field results on ultrasonic mold thermal mapping for quality improvement and initial solidification diagnostics, [in] AISTech 2022 Proceedings of the Iron and Steel Technology Conference, Pittsburgh, PA, 2022, p. 685.
|
[62] |
I. Mazza, S. Miani, S. Spagnul, and G. Schiavon, Contactless mold thermal mapping: a new tool for metallurgists, quality control and productivity improvement, [in] AISTech 2020 Proceedings of the Iron and Steel Technology Conference, Pittsburgh, PA, 2020, p. 380.
|
[63] |
I. Mazza, S. Miani, G. Schiavon, and S. Spagnul, Real-time and contactless mold thermal monitoring: Improving metallurgy, quality and productivity of billets and blooms, Berg Huettenmaenn Monatsh, 165(2020), No. 1, p. 11. doi: 10.1007/s00501-019-00940-8
|
[64] |
I. Mazza, S. Miani, G. Schiavon, and S. Spagnul, The mold temperature mapping with ultrasonic contactless technology is the key for the real-time initial solidification process control tools, La Metallurgia Italiana, 4(2022), p. 107.
|
[65] |
X. Qin, C.F. Zhu, Y.R. Yin, and X.R. Dong, Forecasting of molten steel breakouts for the slab continuous casters with hydraulic servo oscillation systems, Iron Steel, 45(2010), No. 11, p. 97.
|
[66] |
F. He, L. Zhou, and Z.H. Deng, Novel mold breakout prediction and control technology in slab continuous casting, J. Process. Contr., 29(2015), p. 1. doi: 10.1016/j.jprocont.2015.03.003
|
[67] |
Y. Liu, X.D. Wang, F.M. Du, et al., Computer vision detection of mold breakout in slab continuous casting using an optimized neural network, Int. J. Adv. Manuf. Technol., 88(2017), No. 1, p. 557.
|
[68] |
B.G. Zhang, Q. Li, G. Wang, and Y. Gao, Breakout prediction based on BP neural network of LM algorithm in continuous casting process, [in] 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha, 2010, p. 765.
|
[69] |
X.D. Wang, M. Yao, and X.F. Chen, Development of prediction method for abnormalities in slab continuous casting using artificial neural network models, ISIJ Int., 46(2006), No. 7, p. 1047. doi: 10.2355/isijinternational.46.1047
|
[70] |
Y.Y. Wang, X.D. Wang, and M. Yao, Integrated model of ACWGAN-GP and computer vision for breakout prediction in continuous casting, Metall. Mater. Trans. B, 53(2022), No. 5, p. 2873. doi: 10.1007/s11663-022-02571-w
|
[71] |
S. Itoyama, H. Yamanaka, and S. Tanaka, Prediction and prevention system for sticking type breakout in continuous casting, [in] Proc. 71th Steelmaking Conf., Toronto, 1988, p. 97.
|
[72] |
L.G. Sun and J.Q. Zhang, Research on slab leakage prediction system based on logic judgment, Metall. Ind. Autom., 33(2009), No. 1. p. 16.
|
[73] |
W.H. Emling, S. Dawson, A.W. Cramb and E. S. Szckcrcs, In mold operation for quality and productivity, [in] Steelmaking Conf. Proc., Warrendalc, 1991, p. 161.
|
[74] |
Y.P. Tian and Y. Liu, Intelligent breakout prediction method based on support vector machine, J. Phys.: Conf. Ser., 1653(2020), No. 1, art. No. 012052. doi: 10.1088/1742-6596/1653/1/012052
|
[75] |
H.Y. Duan, X.D. Wang, Y. Bai, M. Yao, and Q.T. Guo, Integrated approach to density-based spatial clustering of applications with noise and dynamic time warping for breakout prediction in slab continuous casting, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2343. doi: 10.1007/s11663-019-01633-w
|
[76] |
C.Y. Shi, S.Y. Guo, J. Chen, et al., Breakout prediction based on twin support vector machine of improved whale optimization algorithm, ISIJ Int., 63(2023), No. 5, p. 880. doi: 10.2355/isijinternational.ISIJINT-2022-372
|
[77] |
M.O. Ansari, J. Ghose, S. Chattopadhyaya, et al., An intelligent logic-based mold breakout prediction system algorithm for the continuous casting process of steel: A novel study, Micromachines, 13(2022), No. 12, art. No. 2148. doi: 10.3390/mi13122148
|
[78] |
J. Zhao, Breakout prediction system based on thermocouples, Metall. Res. Technol., 36(2012), No. 6, p. 16.
|
[79] |
X.X. Liu, P.Z. Liu, and J.Q. Zhou, Numerical simulation and prediction for sticking type breakout behavior in slab contiuous casting, J. Univ. Sci. Technol. Beijing, 19(1997), No. 2, p. 143.
|
[80] |
H. Yang, Y.M. He, C.J. Zhang, S.Q. Xu, and J.G. Zhang, Application of breakout prediction system for 2# slab caster in Chongqing steel, [in] Proceedings of the 2012 National Steelmaking Continuous Casting Production Technology Conference, Chongqing, 2012, p. 85.
|
[81] |
Y. Liu, Y.P. Tian, X.D. Wang, and Y.L. Gao, Influence of processing parameters on slab stickers during continuous casting, High Temp. Mater. Process., 39(2020), No. 1, p. 228. doi: 10.1515/htmp-2020-0065
|
[82] |
B. Wang, B.N. Walker, and I.V. Samarasekera, Shell growth, surface quality and mould taper design for high-speed casting of stainless steel billets, Can. Metall. Q., 39(2000), No. 4, p. 441. doi: 10.1179/cmq.2000.39.4.441
|
[83] |
S. Kumar, J.A. Meech, I.V. Samarasekera, J.K. Brimacombe, and V. Rakocevic, Development of intelligent mould for online detection of defects in steel billets, Ironmaking Steelmaking, 26(1999), No. 4, p. 269. doi: 10.1179/030192399677130
|
[84] |
I.V. Samarasekera and J.K. Brimacombe, Evolution or revolution? —A new era in billet casting, Can. Metall. Q., 38(1999), No. 5, p. 347.
|
[85] |
P. Xu, S.J. Wang, Y.Z. Zhou, D.F. Chen, M.J. Long, and H.M. Duan, Thickness distributions of mold flux film and air gap in billet ultra-high speed continuous casting mold through multiphysics modeling, Front. Mater., 9(2022), art. No. 841961. doi: 10.3389/fmats.2022.841961
|
[86] |
Z.Y. Niu, F.S. Du, J.Y. Jiang, and H. Yu, A novel control technique for longitudinal off-corner depressions on wide faces of continuous casting slabs: Effect of the mold design on controlling LOCDs, Metall. Mater. Trans. B, 54(2023), No. 4, p. 1900. doi: 10.1007/s11663-023-02803-7
|
[87] |
H.Y. Duan, J.J. Wei, L. Qi, X.D. Wang, Y. Liu, and M. Yao, Longitudinal crack detection approach based on principal component analysis and support vector machine for slab continuous casting, Steel Res. Int., 92(2021), No. 10, art. No. 2100168. doi: 10.1002/srin.202100168
|
[88] |
F.M. Du, X.D. Wang, Y. Liu, J.J. Wei, and M. Yao, Prediction of longitudinal cracks based on a full-scale finite-element model coupled inverse algorithm for a continuously cast slab, Steel Res. Int., 88(2017), No. 10, art. No. 1700013. doi: 10.1002/srin.201700013
|
[89] |
Y. Liu, X.D. Wang, Y. Sun, et al., Research on a new detection method of slab surface crack in mould during continuous casting, Metall. Res. Technol., 115(2017), No. 1, art. No. 108.
|
[90] |
H.Y. Duan, X.D. Wang, and M. Yao, Development of prediction method for mold sticking breakout based on density-based spatial clustering of applications with noise and dynamic time warping, Chin. J. Eng., 42(2020), No. 3, p. 348.
|
[91] |
S. Carless, A. Westendorp, A. Kamperman, and J. Brockhoff, Optimization of Surface Quality through Mold Thermal Monitoring, [in] AISTech 2010 Proceedings, Pittsburgh, 2010. p.105.
|
[92] |
I. Sohn and A. Sinha, Mold thermocouple locations and their impact on prevention of caster breakouts, Mater. Sci. Forum, 654-656(2010), p. 394. doi: 10.4028/www.scientific.net/MSF.654-656.394
|
[93] |
D. Lieftucht, M. Arzberger, M. Reifferscheid, and J. Schlüter, Online prediction of longitudinal facial cracks in thin slab casting using principal component analysis, J. Iron Steel Res. Int., 15(2008), Suppl. 1, p. 255.
|
[94] |
H. Nakato, M. Ozawa, K. Kinoshita, Y. Habu, and T. Emi, Factors affecting the formation of shell and longitudinal cracks in mold during high speed continuous casting of slabs, Trans. ISIJ, 24(1984), No. 11, p. 957. doi: 10.2355/isijinternational1966.24.957
|
[95] |
A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, and A.W. Cramb, A mold simulator for the continuous casting of steel: Part I. The development of a simulator, Metall. Mater. Trans. B, 36(2005), No. 3, p. 355. doi: 10.1007/s11663-005-0065-5
|
[96] |
A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, and A.W. Cramb, A mold simulator for continuous casting of steel: Part II. The formation of oscillation marks during the continuous casting of low carbon steel, Metall. Mater. Trans. B, 36(2005), No. 3, p. 373. doi: 10.1007/s11663-005-0066-4
|
[97] |
P. Stefan, H. Krupp, and A.G. Stahl, Advanced thermal mold monitoring continuous casting, [in] C.E. Slater, K.A. Catanzarite, W. Silvonic, M.A. Sample, and M.L. Rhone, eds., Continuous Casting, Vol. 9, The Iron and Steel Society, Warrendale, PA, 1997, p. 431.
|
[98] |
I. Sohn, T. J. Piccone, T. Natarajan, and W. Schlichting, Initial study on the effect of mold copper thickness on sticker, flux entrapment and bleeder events at U. S. Steel, [in] AISTech 2009 Proceedings of the Iron and Steel Technology Conference, St. Louis, 2009, p. 1217.
|
[99] |
J.A. Kromhout, Mould Powders for High-speed Continuous Casting of Steel [Dissertation], Delft University of Technology, Delft, 2011, p.157
|
[100] |
R.J. O’Malley and J. Neal, An examination of mold flux film structures and mold gap behavior using mold thermal monitoring and petrographic analysis at armco’s mansfield operations, [in] METEC Congress 99, Dusseldorf, 1999, p.1.
|
[101] |
H. Lopez, A. Robles, I. Machon, E. Fernandez, and L.F. Sancho, Temperature monitoring system in the mould of a slab continuous casting line, [in] 2007 IEEE International Symposium on Industrial Electronics, Vigo, 2007, p. 175.
|
[102] |
H.M. Zhao, X.H. Wang, and J.M. Zhang, Research on mold flux for hypo-peritectic steel at high casting speed, J. Univ. Sci. Technol. Beijing, 14(2007), No. 3, p. 219. doi: 10.1016/S1005-8850(07)60042-5
|
[103] |
G. Alvarez De Toledo, J. Ciriza, J.J. Laraudogoitia, and A. Arteaga, Abnormal transient phenomena in the continuous casting process: Part 2, Ironmaking Steelmaking, 30(2003), No. 5, p. 360. doi: 10.1179/030192303225004051
|
[104] |
E. Nolte, J. D. Smith, M. Frazee, N. Sutcliffe and R. J. O’Malley, Application of cathodoluminescence in analyzing mold flux films, advances in molten slags, fluxes, and salts, [in] Proc. 10th Int. Conf. on Molten Slags , Fluxes , and Salts, Seattle, 2016, p. 317.
|
[105] |
R. O’Malley, E. Peterson, J. Smith, S. Jaunch, M. MClymonds, and N. Sutcliffe, Influence of mold flux crystallite film fracture on thermal fluctuations in a thin-slab funnel mold, Iron Steel Technol., 15(2018), No. 8. p. 58.
|
[106] |
J.A. Kromhout, S.P. Carless, E.R. Dekker and C.V. Kralingen, Revealing the unknown: Monitoring the in-mould performance during continuous casting of steel, [in] Proc. 8th Eur. Continuous Casting Conf., Graz, 2014, p. 982.
|
[107] |
G.H. Wen, F.H. Chen, W.B. Jiang, Z.B. Hou, and P. Tang, Theory and application of “smart mold powders” for continuous casting of steel, Chin. J. Eng. Des., 44(2022), No. 9, p. 1558.
|