Chen Li, Wenhui Ma, Yang Li,  and Kuixian Wei, Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1241-1248. https://doi.org/10.1007/s12613-023-2800-9
Cite this article as:
Chen Li, Wenhui Ma, Yang Li,  and Kuixian Wei, Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1241-1248. https://doi.org/10.1007/s12613-023-2800-9
Research Article

Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil

+ Author Affiliations
  • Corresponding authors:

    Wenhui Ma    E-mail: mwhsilicon@126.com

    Yang Li    E-mail: liyang@mail.gyig.ac.cn

  • Received: 13 June 2023Revised: 26 November 2023Accepted: 28 November 2023Available online: 1 December 2023
  • Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering. It involves systematic and theoretical engineering technology for utilizing planetary resources in situ. However, space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field, making the microstructure of lunar soil differ from that of minerals on the Earth. In this study, scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples. The microstructural characteristics of the lunar soil may drastically change its metallurgical performance. The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites, the amorphous layer caused by solar wind injection, and radiation tracks modified by high-energy particle rays inside mineral crystals. The nanophase iron presents a wide distribution, which may have a great impact on the electromagnetic properties of lunar soil. Hydrogen ions injected by solar wind may promote the hydrogen reduction process. The widely distributed amorphous layer and impact glass can promote the melting and diffusion process of lunar soil. Therefore, although high-energy events on the lunar surface transform the lunar soil, they also increase the chemical activity of the lunar soil. This is a property that earth samples and traditional simulated lunar soil lack. The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil.
  • loading
  • [1]
    P.O' Brien and S. Byrne, Physical and chemical evolution of lunar mare regolith, J. Geophys. Res. Planets, 126(2021), No. 2, art. No. e2020JE006634. doi: 10.1029/2020JE006634
    [2]
    K.M. Cannon, C.B. Dreyer, G.F. Sowers, et al., Working with lunar surface materials: Review and analysis of dust mitigation and regolith conveyance technologies, Acta Astronaut., 196(2022), p. 259. doi: 10.1016/j.actaastro.2022.04.037
    [3]
    C.M. Pieters and S.K. Noble, Space weathering on airless bodies, J. Geophys. Res. Planets, 121(2016), No. 10, p. 1865. doi: 10.1002/2016JE005128
    [4]
    H. Tang, S.J. Wang, and X.Y. Li, Simulation of nanophase iron production in lunar space weathering, Planet. Space Sci., 60(2012), No. 1, p. 322. doi: 10.1016/j.pss.2011.10.006
    [5]
    T. Noguchi, T. Nakamura, M. Kimura, et al., Incipient space weathering observed on the surface of Itokawa dust particles, Science, 333(2011), No. 6046, p. 1121. doi: 10.1126/science.1207794
    [6]
    P.G. Lucey and M.A. Riner, The optical effects of small iron particles that darken but do not redden: Evidence of intense space weathering on Mercury, Icarus, 212(2011), No. 2, p. 451. doi: 10.1016/j.icarus.2011.01.022
    [7]
    T. Hiroi, M. Abe, K. Kitazato, et al., Developing space weathering on the asteroid 25143 Itokawa, Nature, 443(2006), No. 7107, p. 56. doi: 10.1038/nature05073
    [8]
    B. Hapke, Space weathering from Mercury to the asteroid belt, J. Geophys. Res., 106(2001), No. E5, p. 10039. doi: 10.1029/2000JE001338
    [9]
    C.M. Pieters, L.A. Taylor, S.K. Noble, et al., Space weathering on airless bodies: Resolving a mystery with lunar samples, Meteorit. Planet. Sci., 35(2000), No. 5, p. 1101. doi: 10.1111/j.1945-5100.2000.tb01496.x
    [10]
    Y. Liu, L.A. Taylor, J.R. Thompson, D.W. Schnare, and J.S. Park, Unique properties of lunar impact glass: Nanophase metallic Fe synthesis, Am. Mineral., 92(2007), No. 8-9, p. 1420. doi: 10.2138/am.2007.2333
    [11]
    T. Kadono, S. Sugita, N.K. Mitani, et al., Vapor clouds generated by laser ablation and hypervelocity impact, Geophys. Res. Lett., 29(2002), No. 20, art. No. 40-1. doi: 10.1029/2002GL015694
    [12]
    K.A. Holsapple, The scaling of impact processes in planetary sciences, Annu. Rev. Earth Planet. Sci., 21(1993), p. 333. doi: 10.1146/annurev.ea.21.050193.002001
    [13]
    M. Chaussidon, Lunar water from the solar wind, Nat. Geosci., 5(2012), p. 766. doi: 10.1038/ngeo1616
    [14]
    A.T. Basilevsky, A.M. Abdrakhimov, and V.A. Dorofeeva, Water and other volatiles on the Moon: A review, Sol. Syst. Res., 46(2012), No. 2, p. 89. doi: 10.1134/S0038094612010017
    [15]
    M. Anand, Lunar water: A brief review, Earth Moon Planets, 107(2010), No. 1, p. 65. doi: 10.1007/s11038-010-9377-9
    [16]
    G.A. Landis, Materials refining on the Moon, Acta Astronaut., 60(2007), No. 10-11, p. 906. doi: 10.1016/j.actaastro.2006.11.004
    [17]
    C. Li, K. Wei, Y. Li, et al., Theoretical calculation and experimental verification of the vacuum thermal decomposition process of lunar silicon oxide, Vacuum, 202(2022), art. No. 111162. doi: 10.1016/j.vacuum.2022.111162
    [18]
    H.M. Sargeant, S.J. Barber, M. Anand, et al., Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon, Planet. Space Sci., 205(2021), art. No. 105287. doi: 10.1016/j.pss.2021.105287
    [19]
    Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
    [20]
    R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, Effect of in situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 644. doi: 10.1007/s12613-020-2157-2
    [21]
    J.L. Zhang, J. Schenk, Z.J. Liu, and K.J. Li, Editorial for special issue on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1817. doi: 10.1007/s12613-022-2535-z
    [22]
    J.L. Zhang, Y. Li, Z.J. Liu, et al., Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1830. doi: 10.1007/s12613-022-2518-0
    [23]
    J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
    [24]
    C. Li, K.X. Wei, Y. Li, et al., A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector, J. Rare Earths, 41(2023), No. 9, p. 1429. doi: 10.1016/j.jre.2022.07.002
    [25]
    Y. Zhong, J.X. Low, Q. Zhu, et al. , In situ resource utilization of lunar soil for highly efficient extraterrestrial fuel and oxygen supply, Natl. Sci. Rev., 10(2022), No. 2, art. No. nwac200.
    [26]
    C. Li, H. Hu, M.F. Yang, et al., Characteristics of the lunar samples returned by the Chang’E-5 mission, Natl. Sci. Rev., 9(2022), No. 2, art. No. nwab188. doi: 10.1093/nsr/nwab188
    [27]
    C.W. Bale, P. Chartrand, S.A. Degterov, et al., FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
    [28]
    C.W. Bale, E. Bélisle, P. Chartrand, et al., Reprint of: FactSage thermochemical software and databases, 2010–2016, Calphad, 55(2016), p. 1. doi: 10.1016/j.calphad.2016.07.004
    [29]
    C. Li, Y. Li, K.X. Wei, et al., Study on surface characteristics of Chang’E-5 fine grained lunar soil, Sci. Sin. Phys. Mech. Astron., 53(2023), No. 3, art. No. 239603. doi: 10.1360/SSPMA-2022-0343
    [30]
    S. Sasaki, K. Nakamura, Y. Hamabe, E. Kurahashi, and T. Hiroi, Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering, Nature, 410(2001), No. 6828, p. 555. doi: 10.1038/35069013
    [31]
    M. Anand, L.A. Taylor, M.A. Nazarov, J. Shu, H.K. Mao, and R.J. Hemley, Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite, Proc. Natl. Acad. Sci. USA, 101(2004), No. 18, p. 6847. doi: 10.1073/pnas.0401565101
    [32]
    L.X. Gu, Y.J. Chen, Y.C. Xu, et al., Space weathering of the chang’e-5 lunar sample from a mid-high latitude region on the Moon, Geophys. Res. Lett., 49(2022), No. 7, art. No. e2022GL097875. doi: 10.1029/2022GL097875
    [33]
    C. Li, Z. Guo, Y. Li, et al., Impact-driven disproportionation origin of nanophase iron particles in Chang’e-5 lunar soil sample, Nat. Astron., 6(2022), p. 1156. doi: 10.1038/s41550-022-01763-3
    [34]
    Z. Guo, C. Li, Y. Li, et al., Nanophase iron particles derived from fayalitic olivine decomposition in Chang’E-5 lunar soil: Implications for thermal effects during impacts, Geophys. Res. Lett., 49(2022), No. 5, art. No. e2021GL097323. doi: 10.1029/2021GL097323
    [35]
    L. Bogani, L. Cavigli, C. de Julián Fernández, et al., Photocoercivity of nano-stabilized Au: Fe superparamagnetic nanoparticles, Adv. Mater., 22(2010), No. 36, p. 4054. doi: 10.1002/adma.201002295
    [36]
    J. Zhang, M. Post, T. Veres, et al., Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles, J. Phys. Chem. B, 110(2006), No. 14, p. 7122. doi: 10.1021/jp0560967
    [37]
    Y. Li, In situ investigation of the valence states of iron-bearing phases in Chang’E-5 lunar soil using FIB, AES, and TEM-EELS techniques, At. Spectrosc., 43(2022), No. 1, p. 53. doi: 10.46770/AS.2022.014
    [38]
    P. Lakshika, M. Kenichiro, F. Kateřina, K. David, P. Antti, and K. Tomáš, Simulation of space weathering on asteroid spectra through hydrogen ion and laser irradiation of meteorites, Planet. Sci. J., 4(2023), No. 4, p. 72. doi: 10.3847/PSJ/acc848
    [39]
    C.L. Young, M.J. Poston, J.J. Wray, K.P. Hand, and R.W. Carlson, The mid-IR spectral effects of darkening agents and porosity on the silicate surface features of airless bodies, Icarus, 321(2019), p. 71. doi: 10.1016/j.icarus.2018.10.032
    [40]
    W. Agosto, Beneficiation and powder metallurgical processing of lunar soil metal, [in] 4th Space Manufacturing; Proceedings of the Fifth Conference, Princeton, 1981, p. 3263.
    [41]
    W.N. Agosto, Lunar Beneficiation, NASA. Johnson Space Center, Space Resources, 3(1992), p. 153.
    [42]
    W.N. Agosto, Electrostatic separation and sizing of ilmenite in lunar soil simulants and samples, Lunar Planet. Sci., 15(1984), p. 1.
    [43]
    W.N. Agosto, Electrostatic separation of binary comminuted mineral mixtures, Space Manuf., 53(1983), p. 315.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Share Article

    Article Metrics

    Article Views(693) PDF Downloads(39) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return