Cite this article as: |
Chen Li, Wenhui Ma, Yang Li, and Kuixian Wei, Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1241-1248. https://doi.org/10.1007/s12613-023-2800-9 |
Wenhui Ma E-mail: mwhsilicon@126.com
Yang Li E-mail: liyang@mail.gyig.ac.cn
[1] |
P.O' Brien and S. Byrne, Physical and chemical evolution of lunar mare regolith, J. Geophys. Res. Planets, 126(2021), No. 2, art. No. e2020JE006634. doi: 10.1029/2020JE006634
|
[2] |
K.M. Cannon, C.B. Dreyer, G.F. Sowers, et al., Working with lunar surface materials: Review and analysis of dust mitigation and regolith conveyance technologies, Acta Astronaut., 196(2022), p. 259. doi: 10.1016/j.actaastro.2022.04.037
|
[3] |
C.M. Pieters and S.K. Noble, Space weathering on airless bodies, J. Geophys. Res. Planets, 121(2016), No. 10, p. 1865. doi: 10.1002/2016JE005128
|
[4] |
H. Tang, S.J. Wang, and X.Y. Li, Simulation of nanophase iron production in lunar space weathering, Planet. Space Sci., 60(2012), No. 1, p. 322. doi: 10.1016/j.pss.2011.10.006
|
[5] |
T. Noguchi, T. Nakamura, M. Kimura, et al., Incipient space weathering observed on the surface of Itokawa dust particles, Science, 333(2011), No. 6046, p. 1121. doi: 10.1126/science.1207794
|
[6] |
P.G. Lucey and M.A. Riner, The optical effects of small iron particles that darken but do not redden: Evidence of intense space weathering on Mercury, Icarus, 212(2011), No. 2, p. 451. doi: 10.1016/j.icarus.2011.01.022
|
[7] |
T. Hiroi, M. Abe, K. Kitazato, et al., Developing space weathering on the asteroid 25143 Itokawa, Nature, 443(2006), No. 7107, p. 56. doi: 10.1038/nature05073
|
[8] |
B. Hapke, Space weathering from Mercury to the asteroid belt, J. Geophys. Res., 106(2001), No. E5, p. 10039. doi: 10.1029/2000JE001338
|
[9] |
C.M. Pieters, L.A. Taylor, S.K. Noble, et al., Space weathering on airless bodies: Resolving a mystery with lunar samples, Meteorit. Planet. Sci., 35(2000), No. 5, p. 1101. doi: 10.1111/j.1945-5100.2000.tb01496.x
|
[10] |
Y. Liu, L.A. Taylor, J.R. Thompson, D.W. Schnare, and J.S. Park, Unique properties of lunar impact glass: Nanophase metallic Fe synthesis, Am. Mineral., 92(2007), No. 8-9, p. 1420. doi: 10.2138/am.2007.2333
|
[11] |
T. Kadono, S. Sugita, N.K. Mitani, et al., Vapor clouds generated by laser ablation and hypervelocity impact, Geophys. Res. Lett., 29(2002), No. 20, art. No. 40-1. doi: 10.1029/2002GL015694
|
[12] |
K.A. Holsapple, The scaling of impact processes in planetary sciences, Annu. Rev. Earth Planet. Sci., 21(1993), p. 333. doi: 10.1146/annurev.ea.21.050193.002001
|
[13] |
M. Chaussidon, Lunar water from the solar wind, Nat. Geosci., 5(2012), p. 766. doi: 10.1038/ngeo1616
|
[14] |
A.T. Basilevsky, A.M. Abdrakhimov, and V.A. Dorofeeva, Water and other volatiles on the Moon: A review, Sol. Syst. Res., 46(2012), No. 2, p. 89. doi: 10.1134/S0038094612010017
|
[15] |
M. Anand, Lunar water: A brief review, Earth Moon Planets, 107(2010), No. 1, p. 65. doi: 10.1007/s11038-010-9377-9
|
[16] |
G.A. Landis, Materials refining on the Moon, Acta Astronaut., 60(2007), No. 10-11, p. 906. doi: 10.1016/j.actaastro.2006.11.004
|
[17] |
C. Li, K. Wei, Y. Li, et al., Theoretical calculation and experimental verification of the vacuum thermal decomposition process of lunar silicon oxide, Vacuum, 202(2022), art. No. 111162. doi: 10.1016/j.vacuum.2022.111162
|
[18] |
H.M. Sargeant, S.J. Barber, M. Anand, et al., Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon, Planet. Space Sci., 205(2021), art. No. 105287. doi: 10.1016/j.pss.2021.105287
|
[19] |
Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
|
[20] |
R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, Effect of in situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 644. doi: 10.1007/s12613-020-2157-2
|
[21] |
J.L. Zhang, J. Schenk, Z.J. Liu, and K.J. Li, Editorial for special issue on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1817. doi: 10.1007/s12613-022-2535-z
|
[22] |
J.L. Zhang, Y. Li, Z.J. Liu, et al., Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1830. doi: 10.1007/s12613-022-2518-0
|
[23] |
J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
|
[24] |
C. Li, K.X. Wei, Y. Li, et al., A novel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector, J. Rare Earths, 41(2023), No. 9, p. 1429. doi: 10.1016/j.jre.2022.07.002
|
[25] |
Y. Zhong, J.X. Low, Q. Zhu, et al. , In situ resource utilization of lunar soil for highly efficient extraterrestrial fuel and oxygen supply, Natl. Sci. Rev., 10(2022), No. 2, art. No. nwac200.
|
[26] |
C. Li, H. Hu, M.F. Yang, et al., Characteristics of the lunar samples returned by the Chang’E-5 mission, Natl. Sci. Rev., 9(2022), No. 2, art. No. nwab188. doi: 10.1093/nsr/nwab188
|
[27] |
C.W. Bale, P. Chartrand, S.A. Degterov, et al., FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
|
[28] |
C.W. Bale, E. Bélisle, P. Chartrand, et al., Reprint of: FactSage thermochemical software and databases, 2010–2016, Calphad, 55(2016), p. 1. doi: 10.1016/j.calphad.2016.07.004
|
[29] |
C. Li, Y. Li, K.X. Wei, et al., Study on surface characteristics of Chang’E-5 fine grained lunar soil, Sci. Sin. Phys. Mech. Astron., 53(2023), No. 3, art. No. 239603. doi: 10.1360/SSPMA-2022-0343
|
[30] |
S. Sasaki, K. Nakamura, Y. Hamabe, E. Kurahashi, and T. Hiroi, Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering, Nature, 410(2001), No. 6828, p. 555. doi: 10.1038/35069013
|
[31] |
M. Anand, L.A. Taylor, M.A. Nazarov, J. Shu, H.K. Mao, and R.J. Hemley, Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite, Proc. Natl. Acad. Sci. USA, 101(2004), No. 18, p. 6847. doi: 10.1073/pnas.0401565101
|
[32] |
L.X. Gu, Y.J. Chen, Y.C. Xu, et al., Space weathering of the chang’e-5 lunar sample from a mid-high latitude region on the Moon, Geophys. Res. Lett., 49(2022), No. 7, art. No. e2022GL097875. doi: 10.1029/2022GL097875
|
[33] |
C. Li, Z. Guo, Y. Li, et al., Impact-driven disproportionation origin of nanophase iron particles in Chang’e-5 lunar soil sample, Nat. Astron., 6(2022), p. 1156. doi: 10.1038/s41550-022-01763-3
|
[34] |
Z. Guo, C. Li, Y. Li, et al., Nanophase iron particles derived from fayalitic olivine decomposition in Chang’E-5 lunar soil: Implications for thermal effects during impacts, Geophys. Res. Lett., 49(2022), No. 5, art. No. e2021GL097323. doi: 10.1029/2021GL097323
|
[35] |
L. Bogani, L. Cavigli, C. de Julián Fernández, et al., Photocoercivity of nano-stabilized Au: Fe superparamagnetic nanoparticles, Adv. Mater., 22(2010), No. 36, p. 4054. doi: 10.1002/adma.201002295
|
[36] |
J. Zhang, M. Post, T. Veres, et al., Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles, J. Phys. Chem. B, 110(2006), No. 14, p. 7122. doi: 10.1021/jp0560967
|
[37] |
Y. Li, In situ investigation of the valence states of iron-bearing phases in Chang’E-5 lunar soil using FIB, AES, and TEM-EELS techniques, At. Spectrosc., 43(2022), No. 1, p. 53. doi: 10.46770/AS.2022.014
|
[38] |
P. Lakshika, M. Kenichiro, F. Kateřina, K. David, P. Antti, and K. Tomáš, Simulation of space weathering on asteroid spectra through hydrogen ion and laser irradiation of meteorites, Planet. Sci. J., 4(2023), No. 4, p. 72. doi: 10.3847/PSJ/acc848
|
[39] |
C.L. Young, M.J. Poston, J.J. Wray, K.P. Hand, and R.W. Carlson, The mid-IR spectral effects of darkening agents and porosity on the silicate surface features of airless bodies, Icarus, 321(2019), p. 71. doi: 10.1016/j.icarus.2018.10.032
|
[40] |
W. Agosto, Beneficiation and powder metallurgical processing of lunar soil metal, [in] 4th Space Manufacturing; Proceedings of the Fifth Conference, Princeton, 1981, p. 3263.
|
[41] |
W.N. Agosto, Lunar Beneficiation, NASA. Johnson Space Center, Space Resources, 3(1992), p. 153.
|
[42] |
W.N. Agosto, Electrostatic separation and sizing of ilmenite in lunar soil simulants and samples, Lunar Planet. Sci., 15(1984), p. 1.
|
[43] |
W.N. Agosto, Electrostatic separation of binary comminuted mineral mixtures, Space Manuf., 53(1983), p. 315.
|