Haibo Feng, Shaohua Li, Kexiao Wang, Junheng Gao, Shuize Wang, Haitao Zhao, Zhenyu Han, Yong Deng, Yuhe Huang, and Xinping Mao, Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 833-841. https://doi.org/10.1007/s12613-023-2805-4
Cite this article as:
Haibo Feng, Shaohua Li, Kexiao Wang, Junheng Gao, Shuize Wang, Haitao Zhao, Zhenyu Han, Yong Deng, Yuhe Huang, and Xinping Mao, Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 833-841. https://doi.org/10.1007/s12613-023-2805-4
Research Article

Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel

+ Author Affiliations
  • Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels. In this work, the austenite dynamic recrystallization (DRX) behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines. The single-pass hot deformation results reveal that the prior austenite grain sizes (PAGSs) for samples with different deformation reductions decrease initially with an increase in deformation temperature. However, once the deformation temperature is beyond a certain threshold, the PAGSs start to increase. It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature, respectively. Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX. In the case of complete DRX, PAGS is predominantly determined by the deformation temperature of the final pass. It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads.
  • loading
  • Supplementary Information-s12613-023-2805-4.docx
  • [1]
    W. Zhong, J.W. Ren, W.J. Wang, Q.Y. Liu, and Z.R. Zhou, Investigation between rolling contact fatigue and wear of high speed and heavy haul railway, Tribol. Mater. Surf. Interfaces, 4(2010), No. 4, p. 197. doi: 10.1179/1751584X10Y.0000000003
    [2]
    X. Song, L. Wang, and Y. Liu, A review of the strengthening–toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 185. doi: 10.1007/s12613-021-2350-y
    [3]
    R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater., 10(2011), No. 11, p. 817. doi: 10.1038/nmat3115
    [4]
    L. Zhou, W.J. Wang, Y. Hu, et al., Study on the wear and damage behaviors of hypereutectoid rail steel in low temperature environment, Wear, 456-457(2020), art. No. 203365. doi: 10.1016/j.wear.2020.203365
    [5]
    G. Lesiuk, M. Smolnicki, R. Mech, A. Zięty, and C. Fragassa, Analysis of fatigue crack growth under mixed mode (I + II) loading conditions in rail steel using CTS specimen, Eng. Fail. Anal., 109(2020), art. No. 104354. doi: 10.1016/j.engfailanal.2019.104354
    [6]
    R. Masoudi Nejad, Numerical study on rolling contact fatigue in rail steel under the influence of periodic overload, Eng. Fail. Anal., 115(2020), art. No. 104624. doi: 10.1016/j.engfailanal.2020.104624
    [7]
    L.B. Godefroid, A.T. Souza, and M.A. Pinto, Fracture toughness, fatigue crack resistance and wear resistance of two railroad steels, J. Mater. Res. Technol., 9(2020), No. 5, p. 9588. doi: 10.1016/j.jmrt.2020.06.092
    [8]
    M. Masoumi, A. Sinatora, and H. Goldenstein, Role of microstructure and crystallographic orientation in fatigue crack failure analysis of a heavy haul railway rail, Eng. Fail. Anal., 96(2019), p. 320. doi: 10.1016/j.engfailanal.2018.10.022
    [9]
    V.N. Khiratkar, K. Mishra, P. Srinivasulu, and A. Singh, Effect of inter-lamellar spacing and test temperature on the Charpy impact energy of extremely fine pearlite, Mater. Sci. Eng. A, 754(2019), p. 622. doi: 10.1016/j.msea.2019.03.121
    [10]
    S. Behera, R.K. Barik, M.B. Sk, R. Mitra, and D. Chakrabarti, Recipe for improving the impact toughness of high-strength pearlitic steel by controlling the cleavage cracking mechanisms, Mater. Sci. Eng. A, 764(2019), art. No. 138256. doi: 10.1016/j.msea.2019.138256
    [11]
    K. Mishra and A. Singh, Effect of interlamellar spacing on fracture toughness of nano-structured pearlite, Mater. Sci. Eng. A, 706(2017), p. 22. doi: 10.1016/j.msea.2017.08.115
    [12]
    M.M. Aranda, B. Kim, R. Rementeria, C. Capdevila, and C.G. de Andrés, Effect of prior austenite grain size on pearlite transformation in a hypoeuctectoid Fe–C–Mn steel, Metall. Mater. Trans. A, 45(2014), No. 4, p. 1778. doi: 10.1007/s11661-013-1996-0
    [13]
    D.F. Zeng, L.T. Lu, Y.H. Gong, N. Zhang, and Y.B. Gong, Optimization of strength and toughness of railway wheel steel by alloy design, Mater. Des., 92(2016), p. 998. doi: 10.1016/j.matdes.2015.12.096
    [14]
    S. Liu, F.C. Zhang, Z.N. Yang, M.M. Wang, and C.L. Zheng, Effects of Al and Mn on the formation and properties of nanostructured pearlite in high-carbon steels, Mater. Des., 93(2016), p. 73. doi: 10.1016/j.matdes.2015.12.134
    [15]
    M.S. Chen, Y.C. Lin, and X.S. Ma, The kinetics of dynamic recrystallization of 42CrMo steel, Mater. Sci. Eng. A, 556(2012), p. 260. doi: 10.1016/j.msea.2012.06.084
    [16]
    L.J. Zhao, N. Park, Y.Z. Tian, A. Shibata, and N. Tsuji, Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties, Sci. Rep., 6(2016), art. No. 39127. doi: 10.1038/srep39127
    [17]
    C.X. Yue, L.W. Zhang, S.L. Liao, et al., Research on the dynamic recrystallization behavior of GCr15 steel, Mater. Sci. Eng. A, 499(2009), No. 1-2, p. 177. doi: 10.1016/j.msea.2007.11.123
    [18]
    Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Dynamic recrystallization behavior of a heat-resistant martensitic stainless steel 403Nb during hot deformation, J. Mater. Sci. Technol., 27(2011), No. 10, p. 913. doi: 10.1016/S1005-0302(11)60164-3
    [19]
    A. Chamanfar, S.M. Chentouf, M. Jahazi, and L.P. Lapierre-Boire, Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel, J. Mater. Res. Technol., 9(2020), No. 6, p. 12102. doi: 10.1016/j.jmrt.2020.08.114
    [20]
    G.R. Ebrahimi, A. Momeni, and H.R. Ezatpour, Modeling the viscoplastic behavior and grain size in a hot worked Nb-bearing high-Mn steel, Mater. Sci. Eng. A, 714(2018), p. 25. doi: 10.1016/j.msea.2017.12.094
    [21]
    K. Arun Babu, Y.H. Mozumder, C.N. Athreya, V.S. Sarma, and S. Mandal, Implication of initial grain size on DRX mechanism and grain refinement in super-304H SS in a wide range of strain rates during large-strain hot deformation, Mater. Sci. Eng. A, 832(2022), art. No. 142269. doi: 10.1016/j.msea.2021.142269
    [22]
    H.C. Ji, Z.M. Cai, W.C. Pei, X.M. Huang, and Y.H. Lu, DRX behavior and microstructure evolution of 33Cr23Ni8Mn3N: Experiment and finite element simulation, J. Mater. Res. Technol., 9(2020), No. 3, p. 4340. doi: 10.1016/j.jmrt.2020.02.059
    [23]
    H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
    [24]
    J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater., 57(2009), No. 9, p. 2748. doi: 10.1016/j.actamat.2009.02.033
    [25]
    C. Facusseh, A. Salinas, A. Flores, and G. Altamirano, Study of static recrystallization kinetics and the evolution of austenite grain size by dynamic recrystallization refinement of an eutectoid steel, Metals, 9(2019), No. 12, art. No. 1289. doi: 10.3390/met9121289
    [26]
    P. Springer and U. Prahl, Characterisation of mechanical behavior of 18CrNiMo7-6 steel with and without nb under warm forging conditions through processing maps analysis, J. Mater. Process. Technol., 237(2016), p. 216. doi: 10.1016/j.jmatprotec.2016.05.021
    [27]
    L. Chen, W.Y. Sun, J. Lin, G.Q. Zhao, and G.C. Wang, Modelling of constitutive relationship, dynamic recrystallization and grain size of 40Cr steel during hot deformation process, Results Phys., 12(2019), p. 784. doi: 10.1016/j.rinp.2018.12.046
    [28]
    S. Saadatkia, H. Mirzadeh, and J.M. Cabrera, Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels, Mater. Sci. Eng. A, 636(2015), p. 196. doi: 10.1016/j.msea.2015.03.104
    [29]
    M.J. Zhao, L. Huang, C.M. Li, J.J. Li, and P.C. Li, Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel, Mater. Sci. Eng. A, 810(2021), art. No. 141031. doi: 10.1016/j.msea.2021.141031
    [30]
    P. Dolzhenko, M. Tikhonova, R. Kaibyshev, and A. Belyakov, Peculiarities of DRX in a highly-alloyed austenitic stainless steel, Materials, 14(2021), No. 14, art. No. 4004. doi: 10.3390/ma14144004
    [31]
    M. Bambach and S. Seuren, On instabilities of force and grain size predictions in the simulation of multi-pass hot rolling processes, J. Mater. Process. Technol., 216(2015), p. 95. doi: 10.1016/j.jmatprotec.2014.07.018
    [32]
    A. Karmakar, S. Biswas, S. Mukherjee, D. Chakrabarti, and V. Kumar, Effect of composition and thermo-mechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel, Mater. Sci. Eng. A, 690(2017), p. 158. doi: 10.1016/j.msea.2017.02.101
    [33]
    S.F. Rodrigues, C. Aranas, B.H. Sun, F. Siciliano, S. Yue, and J.J. Jonas, Effect of grain size and residual strain on the dynamic transformation of austenite under plate rolling conditions, Steel Res. Int., 89(2018), No. 6, art. No. 1700547. doi: 10.1002/srin.201700547
    [34]
    H. Mirzadeh, M.H. Parsa, and D. Ohadi, Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size, Mater. Sci. Eng. A, 569(2013), p. 54. doi: 10.1016/j.msea.2013.01.050
    [35]
    R. Mohammadi Ahmadabadi, M. Naderi, J. Aghazadeh Mohandesi, and J.M. Cabrera, Grain growth behaviour of an AISI 422 martensitic stainless steel after hot deformation process, Can. Metall. Q., 57(2018), No. 3, p. 367. doi: 10.1080/00084433.2018.1444414
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(476) PDF Downloads(48) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return