Haonan Si, Xuan Zhao, Qingliang Liao, and Yue Zhang, Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2808-1
Cite this article as:
Haonan Si, Xuan Zhao, Qingliang Liao, and Yue Zhang, Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2808-1
Research Article

Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation

+ Author Affiliations
  • Corresponding authors:

    Qingliang Liao    E-mail: liao@ustb.edu.cn

    Yue Zhang    E-mail: yuezhang@ustb.edu.cn

  • Received: 17 September 2023Revised: 29 November 2023Accepted: 6 December 2023Available online: 8 December 2023
  • Lithography is a pivotal micro/nanomanufacturing technique, facilitating performance enhancements in an extensive array of devices, encompassing sensors, transistors, and photovoltaic devices. The key to creating highly precise, multiscale-distributed patterned structures is the precise control of the lithography process. Herein, high-quality patterned ZnO nanostructures are constructed by systematically tuning the exposure and development times during lithography. By optimizing these parameters, ZnO nanorod arrays with line/hole arrangements are successfully prepared. Patterned ZnO nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure, enlarged surface area, and improved light capture ability, which achieve highly efficient energy conversion in perovskite solar cells. The lithography process management for these patterned ZnO nanostructures provides important guidance for the design and construction of complex nanostructures and devices with excellent performance.
  • loading
  • Supplementary Information-s12613-023-2808-1.docx
  • [1]
    X.H. Wang, X. Dai, H. Wang, J. Wang, et al., All-water etching-free electron beam lithography for on-chip nanomaterials, ACS Nano, 17(2023), No. 5, p. 4933. doi: 10.1021/acsnano.2c12387
    [2]
    P.P. Zhang, G.L. Yang, F. Li, J.B. Shi, and H.Z. Zhong, Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes, Nat. Commun., 13(2022), No. 1, art. No. 6713. doi: 10.1038/s41467-022-34453-9
    [3]
    Z.M. Chai, A. Childress, and A.A. Busnaina, Directed assembly of nanomaterials for making nanoscale devices and structures: Mechanisms and applications, ACS Nano, 16(2022), No. 11, p. 17641. doi: 10.1021/acsnano.2c07910
    [4]
    B.Y. Wen, J.Y. Wang, T.L. Shen, et al., Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution, Light Sci. Appl., 11(2022), No. 1, art. No. 235. doi: 10.1038/s41377-022-00918-1
    [5]
    A. Capitaine, M. Bochet-Modaresialam, P. Poungsripong, et al., Nanoparticle imprint lithography: From nanoscale metrology to printable metallic grids, ACS Nano, 17(2023), No. 10, p. 9361. doi: 10.1021/acsnano.3c01156
    [6]
    B.B. Jin, Y. Hong, Z.Q. Li, et al., Ice-assisted electron-beam lithography for halide perovskite optoelectronic nanodevices, Nano Energy, 102(2022), art. No. 107692. doi: 10.1016/j.nanoen.2022.107692
    [7]
    D. Chen, Y. Wang, H. Zhou, et al., Current and future trends for polymer micro/nanoprocessing in industrial applications, Adv. Mater., 34(2022), No. 52, art. No. e2200903. doi: 10.1002/adma.202200903
    [8]
    S.F. Liu, Z.W. Hou, L.H. Lin, et al., 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding, Science, 377(2022), No. 6610, p. 1112. doi: 10.1126/science.abo5345
    [9]
    M. Luitz, M. Lunzer, A. Goralczyk, et al., High resolution patterning of an organic–inorganic photoresin for the fabrication of platinum microstructures, Adv. Mater., 33(2021), No. 37, art. No. 2101992. doi: 10.1002/adma.202101992
    [10]
    D. Barcons Ruiz, H. Herzig Sheinfux, R. Hoffmann, et al., Engineering high quality graphene superlattices via ion milled ultra-thin etching masks, Nat. Commun., 13(2022), No. 1, art. No. 6926. doi: 10.1038/s41467-022-34734-3
    [11]
    A. Sharstniou, S. Niauzorau, A. L. Hardison, et al., Roughness Suppression in electrochemical nanoimprinting of Si for applications in silicon photonics, Adv. Mater., 34(2022), No. 43, . art. No. 2206608. doi: 10.1002/adma.202206608
    [12]
    J.W. Lee and S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications, Nano Micro Lett., 15(2023), No. 1, art. No. 184. doi: 10.1007/s40820-023-01154-x
    [13]
    Y.Y. Wang, I. Fedin, H. Zhang, and D.V. Talapin, Direct optical lithography of functional inorganic nanomaterials, Science, 357(2017), No. 6349, p. 385. doi: 10.1126/science.aan2958
    [14]
    H.N. Si, Z. Kang, X. Cheng, Z.M. Bai and Y. Zhang, Application of patterned ZnO in energy devices, Chin. J. Eng., 39(2017), No.No. 7, p. 973.
    [15]
    X. Chen, P. Lin, X.Q. Yan, et al., Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metal-oxide solar cells, ACS Appl. Mater. Interfaces, 7(2015), No. 5, p. 3216. doi: 10.1021/am507836v
    [16]
    H.N. Si, Q.L. Liao, Z. Zhang, Y et al., An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability, Nano Energy, 22(2016), p. 223. doi: 10.1016/j.nanoen.2016.02.025
    [17]
    H.N. Si, X. Zhao, Z. Zhang, Q.L. Liao, and Y. Zhang, Low-temperature electron-transporting materials for perovskite solar cells: Fundamentals, progress, and outlook, Coord. Chem. Rev., 500(2024), art. No. 215502. doi: 10.1016/j.ccr.2023.215502
    [18]
    Z.B. Que, L. Chu, S.B. Zhai, Y.F. Feng, et al., Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1280. doi: 10.1007/s12613-021-2361-8
    [19]
    K.M. Deng and L. Li, Optical design in perovskite solar cells, Small Methods, 4(2020), No. 6, art. No. 1900150. doi: 10.1002/smtd.201900150
    [20]
    J.H. Zheng, L.X. Zhu, Z.T. Shen, et al., Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 283. doi: 10.1007/s12613-021-2316-0
    [21]
    W.F. Liu, J.B. Wang, X.Z. Xu, C.Z. Zhao, X.B. Xu, and P.S. Weiss, Single-step dual-layer photolithography for tunable and scalable nanopatterning, ACS Nano, 15(2021), No. 7, p. 12180. doi: 10.1021/acsnano.1c03703
    [22]
    S.M. Aghaei, N. Yasrebi, and B. Rashidian, Characterization of line nanopatterns on positive photoresist produced by scanning near-field optical microscope, J. Nanomater., 2015(2015), No. 1, art. No. 936876. doi: 10.1155/2015/936876
    [23]
    M. Striccoli, Photolithography based on nanocrystals, Science, 357(2017), No. 6349, p. 353. doi: 10.1126/science.aan8430
    [24]
    W. Wang, P. Pfeiffer, and L. Schmidt-Mende, Direct patterning of metal chalcogenide semiconductor materials, Adv. Funct. Mater., 30(2020), No. 27, art. No. 2002685. doi: 10.1002/adfm.202002685
    [25]
    S.H. Luo, B.H. Hoff, S.A. Maier, and J.C. de Mello, Scalable fabrication of metallic nanogaps at the sub-10 nm level, Adv. Sci., 8(2021), No. 24, art. No. 2102756. doi: 10.1002/advs.202102756
    [26]
    H.H. Li, M.L. Liu, J.J. Zhao, et al., Controllable heterogeneous nucleation for patterning high-quality vertical and horizontal ZnO microstructures toward photodetectors, Small, 16(2020), No. 42, art. No. 2004136. doi: 10.1002/smll.202004136
    [27]
    Z. Kang, H.N. Si, S.C. Zhang, et al., Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting, Adv. Funct. Mater., 29(2019), No. 15, art. No. 1808032. doi: 10.1002/adfm.201808032
    [28]
    H.N. Si, Z. Kang, Q.L. Liao, et al., Design and tailoring of patterned ZnO nanostructures for energy conversion applications, Sci. China Mater., 60(2017), No. 9, p. 793. doi: 10.1007/s40843-017-9105-3
    [29]
    L.Q. Tian, Q. Xin, C. Zhao, et al., Nanoarray structures for artificial photosynthesis, Small, 17(2021), No. 38, art. No. 2006530. doi: 10.1002/smll.202006530
    [30]
    C.Z. Xu, S.C. Zhang, W.Q. Fan, et al., Pushing the limit of open-circuit voltage deficit via modifying buried interface in CsPbI3 perovskite solar cells, Adv. Mater., 35(2023), No. 7, art. No. 2207172. doi: 10.1002/adma.202207172
    [31]
    M. Yue, J. Su, P. Zhao, et al., Optimizing the performance of CsPbI3-Based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering, Nano Micro Lett., 11(2019), No. 1, art. No. 91. doi: 10.1007/s40820-019-0320-y
    [32]
    W.H. Wang and L.M. Qi, Light management with patterned micro- and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices, Adv. Funct. Mater., 29(2019), No. 25, art. No. 1807275. doi: 10.1002/adfm.201807275
    [33]
    Q.C. He, H.M. Zhang, S.Q. Han, et al., Improvement of nanopore structure SnO2 electron-transport layer for carbon-based CsPbIBr2 perovskite solar cells, Mater. Sci. Semicond. Process., 148(2022), art. No. 106787. doi: 10.1016/j.mssp.2022.106787
    [34]
    S.Q. Deng, B.E. Tan, A.S.R. Chesman, et al., Back-contact perovskite solar cell fabrication via microsphere lithography, Nano Energy, 102(2022), art. No. 107695. doi: 10.1016/j.nanoen.2022.107695
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Share Article

    Article Metrics

    Article Views(111) PDF Downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return