Haiping Lei, Tianwei Wei, Jiguo Tu, and Shuqiang Jiao, Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2810-7
Cite this article as:
Haiping Lei, Tianwei Wei, Jiguo Tu, and Shuqiang Jiao, Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2810-7
Research Article

Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries

+ Author Affiliations
  • Corresponding author:

    Shuqiang Jiao    E-mail: sjiao@ustb.edu.cn

  • Received: 25 September 2023Revised: 21 November 2023Accepted: 13 December 2023Available online: 15 December 2023
  • Incorporating a selenium (Se) positive electrode into aluminum (Al)-ion batteries is an effective strategy for improving the overall battery performance. However, the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products. In this work, we aim to harness the advantages of Se while reducing its limitations by preparing a core–shell mesoporous carbon hollow sphere with a titanium nitride (C@TiN) host to load 63.9wt% Se as the positive electrode material for Al–Se batteries. Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN, the obtained core–shell mesoporous carbon hollow spheres coated with Se (Se@C@TiN) display superior utilization of the active material and remarkable cycling stability. As a result, Al–Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g−1 at a current density of 1000 mA·g−1 while maintaining a discharge specific capacity of 86.0 mAh·g−1 over 200 cycles. This improved cycling performance is ascribed to the high electrical conductivity of the core–shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.
  • loading
  • [1]
    S.M. He, D. Zhang, X. Zhang, S.Q. Liu, W.Q. Chu, and H.J. Yu, Rechargeable Al-chalcogen batteries: Status, challenges, and perspectives, Adv. Energy Mater., 11(2021), No. 29, art. No. 2100769. doi: 10.1002/aenm.202100769
    [2]
    L. Yao, S.L. Ju, and X.B. Yu, Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries, J. Mater. Chem. A, 9(2021), No. 31, p. 16878. doi: 10.1039/D1TA03465K
    [3]
    X.F. Zhang and S.Q. Jiao, Modified Al negative electrode for stable high-capacity Al–Te batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 896. doi: 10.1007/s12613-022-2410-y
    [4]
    Y.F. Ai, S.C. Wu, K.Y. Wang, et al., Three-dimensional molybdenum diselenide helical nanorod arrays for high-performance aluminum-ion batteries, ACS Nano, 14(2020), No. 7, p. 8539. doi: 10.1021/acsnano.0c02831
    [5]
    Y. Chen, K.L. Zhang, N. Li, et al., Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 33. doi: 10.1007/s12613-022-2416-5
    [6]
    C.L. Zheng, J.G. Tu, S.Q. Jiao, M.Y. Wang, and Z. Wang, Sb2Te3 hexagonal nanosheets as high-capacity positive materials for rechargeable aluminum batteries, ACS Appl. Energy Mater., 3(2020), No. 12, p. 12635. doi: 10.1021/acsaem.0c02553
    [7]
    H.P. Lei, J.G. Tu, W.L. Song, H.D. Jiao, X. Xiao, and S.Q. Jiao, A dual-protection strategy using CMK-3 coated selenium and modified separators for high-energy Al–Se batteries, Inorg. Chem. Front., 8(2021), No. 4, p. 1030. doi: 10.1039/D0QI01302A
    [8]
    H.P. Lei, S.Q. Jiao, J.G. Tu, et al., Modified separators for rechargeable high-capacity selenium-aluminium batteries, Chem. Eng. J., 385(2020), art. No. 123452. doi: 10.1016/j.cej.2019.123452
    [9]
    Z.Y. Li, X.X. Wang, X.X. Li, and W.M. Zhang, Reduced graphene oxide (rGO) coated porous nanosphere TiO2@Se composite as cathode material for high-performance reversible Al-Se batteries, Chem. Eng. J., 400(2020), art. No. 126000. doi: 10.1016/j.cej.2020.126000
    [10]
    T. Zhang, T.H. Cai, W. Xing, et al., A rechargeable 6-electron Al–Se battery with high energy density, Energy Storage Mater., 41(2021), p. 667. doi: 10.1016/j.ensm.2021.06.041
    [11]
    W.R. Lv, G.H. Wu, X.X. Li, W.M. Zhang, and Z.Y. Li, Advanced structure selenium nanosphere@Ti3C2@graphene oxide with dual-channel and multiple protection strategies for Al–Se batteries, J. Power Sources, 564(2023), art. No. 232827. doi: 10.1016/j.jpowsour.2023.232827
    [12]
    X.D. Huang, Y. Liu, C. Liu, J. Zhang, O. Noonan, and C.Z. Yu, Rechargeable aluminum-selenium batteries with high capacity, Chem. Sci., 9(2018), No. 23, p. 5178. doi: 10.1039/C8SC01054D
    [13]
    R. Wang, D.G. Wang, Y. Dong, et al., Recent progress of advanced carbon-based cathode in sodium-selenium batteries, J. Alloys Compd., 952(2023), art. No. 169980. doi: 10.1016/j.jallcom.2023.169980
    [14]
    X.S. Zhao, L.C. Yin, T. Zhang, et al., Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li–Se and Na–Se batteries, Nano Energy, 49(2018), p. 137. doi: 10.1016/j.nanoen.2018.04.045
    [15]
    J.M. Sun, Z.Z. Du, Y.H. Liu, et al., State-of-the-art and future challenges in high energy lithium–selenium batteries, Adv. Mater., 33(2021), No. 10, art. No. 2003845. doi: 10.1002/adma.202003845
    [16]
    S.A. Abbas, M. Forghani, S. Anh, S.W. Donne, and K.D. Jung, Carbon hollow spheres as electrochemical capacitors: Mechanistic insights, Energy Storage Mater., 24(2020), p. 550. doi: 10.1016/j.ensm.2019.06.034
    [17]
    Y.Q. Kong, A.K. Nanjundan, Y. Liu, H. Song, X.D. Huang, and C.Z. Yu, Modulating ion diffusivity and electrode conductivity of carbon Nanotube@Mesoporous carbon fibers for high performance aluminum–selenium batteries, Small, 15(2019), No. 51, art. No. 1904310. doi: 10.1002/smll.201904310
    [18]
    Z.Y. Li, J. Liu, X.G. Huo, J.L. Li, and F.Y. Kang, Novel one-dimensional hollow carbon nanotubes/selenium composite for high-performance Al-Se batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 49, p. 45709. doi: 10.1021/acsami.9b16597
    [19]
    J.J. Zhang, J.W. Liang, Y.C. Zhu, D.H. Wei, L. Fan, and Y.T. Qian, Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries, J. Mater. Chem. A, 2(2014), No. 8, p. 2728. doi: 10.1039/c3ta13228e
    [20]
    X.Y. Wu, X. Chen, H.Y. Wu, et al., Encapsulation of Se in dual-wall hollow carbon spheres: Physical confinement and chemisorption for superior Na–Se and K–Se batteries, Carbon, 187(2022), p. 354. doi: 10.1016/j.carbon.2021.11.013
    [21]
    Y.J. Hong, K.C. Roh, and Y.C. Kang, Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li–Se batteries, J. Mater. Chem. A, 6(2018), No. 9, p. 4152. doi: 10.1039/C7TA11112F
    [22]
    Z.M. Cui, C.X. Zu, W.D. Zhou, A. Manthiram, and J.B. Goodenough, Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries, Adv. Mater., 28(2016), No. 32, p. 6926. doi: 10.1002/adma.201601382
    [23]
    H.P. Lei, J.G. Tu, S.Q. Li, et al., Graphene-encapsulated selenium@polyaniline nanowires with three-dimensional hierarchical architecture for high-capacity aluminum–selenium batteries, J. Mater. Chem. A, 10(2022), No. 28, p. 15146. doi: 10.1039/D2TA04210J
    [24]
    Z. Li, J.T. Zhang, B.Y. Guan, and X.W. Lou, Mesoporous Carbon@Titanium nitride hollow spheres as an efficient SeS2 host for advanced Li–SeS2 batteries, Angew. Chem. Int. Ed., 56(2017), No. 50, p. 16003. doi: 10.1002/anie.201709176
    [25]
    L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
    [26]
    H.T. Liu, Z.H. Huang, J.T. Huang, et al., Unique single-crystal TiN1 + x nano-rods: Synthesis, electrical transportation, and electric field effect conductivity, Mater. Des., 111(2016), p. 541. doi: 10.1016/j.matdes.2016.09.028
    [27]
    M. Jia, C.P. Mao, Y.B. Niu, et al., A selenium-confined porous carbon cathode from silk cocoons for Li–Se battery applications, RSC Adv., 5(2015), No. 116, p. 96146. doi: 10.1039/C5RA19000B
    [28]
    T. Liu, L.Y. Zhang, W. You, and J.G. Yu, Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor, Small, 14(2018), No. 12, art. No. 1702407. doi: 10.1002/smll.201702407
    [29]
    L.C. Zeng, X. Wei, J.Q. Wang, Y. Jiang, W.H. Li, and Y. Yu, Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries, J. Power Sources, 281(2015), p. 461. doi: 10.1016/j.jpowsour.2015.02.029
    [30]
    Y.J. Han, X. Yue, Y.S. Jin, X.D. Huang, and P.K. Shen, Hydrogen evolution reaction in acidic media on single-crystalline titanium nitride nanowires as an efficient non-noble metal electrocatalyst, J. Mater. Chem. A, 4(2016), No. 10, p. 3673. doi: 10.1039/C5TA09976E
    [31]
    P.H. Yang, D.L. Chao, C.R. Zhu, et al., Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures, Adv. Sci., 3(2016), No. 6, art. No. 1500299. doi: 10.1002/advs.201500299
    [32]
    Z. Huang, W.L. Song, Y.J. Liu, et al., Stable quasi-solid-state aluminum batteries, Adv. Mater., 34(2022), No. 8, art. No. 2104557. doi: 10.1002/adma.202104557
    [33]
    Y.X. Guo, W. Wang, H.P. Lei, M.Y. Wang, and S.Q. Jiao, Alternate storage of opposite charges in multisites for high-energy-density Al–MOF batteries, Adv. Mater., 34(2022), No. 13, art. No. 2110109. doi: 10.1002/adma.202110109
    [34]
    W. Wang, B. Jiang, C. Qian, et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage, Adv. Mater., 30(2018), No. 30, art. No. 1801812. doi: 10.1002/adma.201801812
    [35]
    G. Han, Z.G. Chen, Y.C. Zou, J. Drennan, and J. Zou, Long wavelength emissions of Se4+-doped In2O3 hierarchical nanostructures, J. Mater. Chem. C, 2(2014), No. 32, p. 6529. doi: 10.1039/C4TC01025F
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Share Article

    Article Metrics

    Article Views(173) PDF Downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return