Cite this article as: |
Zhengjiao Xu, Chuanbao Liu, Xueqian Wang, Yongliang Li, and Yang Bai, Nonreciprocal thermal metamaterials: Methods and applications, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1678-1693. https://doi.org/10.1007/s12613-023-2811-6 |
Chuanbao Liu E-mail: cbliu@ustb.edu.cn
Yang Bai E-mail: baiy@mater.ustb.edu.cn
[1] |
C.Z. Fan, Y. Gao, and J.P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett., 92(2008), No. 25, art. No. 251907. doi: 10.1063/1.2951600
|
[2] |
T. Chen, C.N. Weng, and J.S. Chen, Cloak for curvilinearly anisotropic media in conduction, Appl. Phys. Lett., 93(2008), No. 11, art. No. 114103. doi: 10.1063/1.2988181
|
[3] |
U. Leonhardt, Optical conformal mapping, Science, 312(2006), No. 5781, p. 1777. doi: 10.1126/science.1126493
|
[4] |
J.B. Pendry, D. Schurig, and D.R. Smith, Controlling electromagnetic fields, Science, 312(2006), No. 5781, p. 1780. doi: 10.1126/science.1125907
|
[5] |
S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, and J. Pendry, Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E, 74(2006), No. 3, art. No. 036621. doi: 10.1103/PhysRevE.74.036621
|
[6] |
D. Schurig, J.J. Mock, B.J. Justice, et al., Metamaterial electromagnetic cloak at microwave frequencies, Science, 314(2006), No. 5801, p. 977. doi: 10.1126/science.1133628
|
[7] |
W.S. Cai, U.K. Chettiar, A.V. Kildishev, and V.M. Shalaev, Optical cloaking with metamaterials, Nat. Photonics, 1(2007), p. 224. doi: 10.1038/nphoton.2007.28
|
[8] |
G.X. Zheng, H. Mühlenbernd, M. Kenney, G.X. Li, T. Zentgraf, and S. Zhang, Metasurface holograms reaching 80% efficiency, Nat. Nanotechnol., 10(2015), p. 308. doi: 10.1038/nnano.2015.2
|
[9] |
W.T. Chen, A.Y. Zhu, V. Sanjeev, et al., A broadband achromatic metalens for focusing and imaging in the visible, Nat. Nanotechnol., 13(2018), p. 220. doi: 10.1038/s41565-017-0034-6
|
[10] |
S.M. Wang, P.C. Wu, V.C. Su, et al., A broadband achromatic metalens in the visible, Nat. Nanotechnol., 13(2018), p. 227. doi: 10.1038/s41565-017-0052-4
|
[11] |
R.A. Shelby, D.R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science, 292(2001), No. 5514, p. 77. doi: 10.1126/science.1058847
|
[12] |
S.H. Lee, C.M. Park, Y.M. Seo, and C.K. Kim, Reversed Doppler effect in double negative metamaterials, Phys. Rev. B, 81(2010), No. 24, art. No. 241102. doi: 10.1103/PhysRevB.81.241102
|
[13] |
A. Alù and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phy. Rev. E, 72(2005), art. No. 016623. doi: 10.1103/PhysRevE.72.016623
|
[14] |
S. Yang, L.J. Xu, G.L. Dai, and J.P. Huang, Omnithermal metamaterials switchable between transparency and cloaking, J. Appl. Phys., 128(2020), No. 9, art. No. 095102. doi: 10.1063/5.0013270
|
[15] |
T. Qu, J. Wang, and J.P. Huang, Manipulating thermoelectric fields with bilayer schemes beyond Laplacian metamaterials, EPL Europhys. Lett., 135(2021), No. 5, art. No. 54004. doi: 10.1209/0295-5075/ac1648
|
[16] |
S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett., 108(2012), No. 21, art. No. 214303. doi: 10.1103/PhysRevLett.108.214303
|
[17] |
S. Guenneau, C. Amra, and D. Veynante, Transformation thermodynamics: Cloaking and concentrating heat flux, Opt. Express, 20(2012), No. 7, p. 8207. doi: 10.1364/OE.20.008207
|
[18] |
R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, Experiments on transformation thermodynamics: Molding the flow of heat, Phys. Rev. Lett., 110(2013), No. 19, art. No. 195901. doi: 10.1103/PhysRevLett.110.195901
|
[19] |
S. Narayana, S. Savo, and Y. Sato, Transient heat flux shielding using thermal metamaterials, Appl. Phys. Lett., 102(2013), No. 20, art. No. 201904. doi: 10.1063/1.4807744
|
[20] |
H.Y. Xu, X.H. Shi, F. Gao, H.D. Sun, and B.L. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett., 112(2014), No. 5, art. No. 054301. doi: 10.1103/PhysRevLett.112.054301
|
[21] |
T.C. Han, X. Bai, D.L. Gao, J.T.L. Thong, B.W. Li, and C.W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett., 112(2014), No. 5, art. No. 054302. doi: 10.1103/PhysRevLett.112.054302
|
[22] |
D.M. Nguyen, H.Y. Xu, Y.M. Zhang, and B.L. Zhang, Active thermal cloak, Appl. Phys. Lett., 107(2015), No. 12, art. No. 121901. doi: 10.1063/1.4930989
|
[23] |
T.C. Han, J.J. Zhao, T. Yuan, D.Y. Lei, B.W. Li, and C.W. Qiu, Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials, Energy Environ. Sci., 6(2013), No. 12, p. 3537. doi: 10.1039/c3ee41512k
|
[24] |
C. Fei and Y.L. Dang, Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials, Sci. Rep., 5(2015), art. No. 11552. doi: 10.1038/srep11552
|
[25] |
W. Liu, C. Lan, M. Ji, et al., A flower-shaped thermal energy harvester made by metamaterials, Global Challenges, 1(2017), No. 6, art. No. 1700017. doi: 10.1002/gch2.201700017
|
[26] |
S. Guenneau and C. Amra, Anisotropic conductivity rotates heat fluxes in transient regimes, Opt. Express, 21(2013), No. 5, p. 6578. doi: 10.1364/OE.21.006578
|
[27] |
F.B. Yang, B.Y. Tian, L.J. Xu, and J.P. Huang, Experimental demonstration of thermal chameleonlike rotators with transformation-invariant metamaterials, Phys. Rev. Appl., 14(2020), No. 5, art. No. 054024. doi: 10.1103/PhysRevApplied.14.054024
|
[28] |
T.C. Han, X. Bai, J.T.L. Thong, B.W. Li, and C.W. Qiu, Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials, Adv. Mater., 26(2014), No. 11, p. 1731. doi: 10.1002/adma.201304448
|
[29] |
T.Z. Yang, Y.S. Su, W.K. Xu, and X.D. Yang, Transient thermal camouflage and heat signature control, Appl. Phys. Lett., 109(2016), No. 12, art. No. 121905. doi: 10.1063/1.4963095
|
[30] |
S. Hong, S. Shin, and R.K. Chen, An adaptive and wearable thermal camouflage device, Adv. Funct. Mater., 30(2020), No. 11, art. No. 1909788. doi: 10.1002/adfm.201909788
|
[31] |
R. Hu, W. Xi, Y.D. Liu, et al., Thermal camouflaging metamaterials, Mater. Today, 45(2021), p. 120. doi: 10.1016/j.mattod.2020.11.013
|
[32] |
R. Hu, S.Y. Huang, M. Wang, L.L. Zhou, X.Y. Peng, and X.B. Luo, Binary thermal encoding by energy shielding and harvesting units, Phys. Rev. Appl., 10(2018), No. 5, art. No. 054032. doi: 10.1103/PhysRevApplied.10.054032
|
[33] |
M. Lei, C.R. Jiang, F.B. Yang, J. Wang, and J.P. Huang, Programmable all-thermal encoding with metamaterials, Int. J. Heat Mass Transf., 207(2023), art. No. 124033. doi: 10.1016/j.ijheatmasstransfer.2023.124033
|
[34] |
M. Kasprzak, M. Sledzinska, K. Zaleski, et al., High-temperature silicon thermal diode and switch, Nano Energy, 78(2020), art. No. 105261. doi: 10.1016/j.nanoen.2020.105261
|
[35] |
Z. Wang, J. Chen, and J. Ren, Geometric heat pump and no-go restrictions of nonreciprocity in modulated thermal diffusion, Phys. Rev. E, 106(2022), No. 3, art. No. L032102. doi: 10.1103/PhysRevE.106.L032102
|
[36] |
Z.J. Coppens and J.G. Valentine, Spatial and temporal modulation of thermal emission, Adv. Mater., 29(2017), No. 39, art. No. 1701275. doi: 10.1002/adma.201701275
|
[37] |
A. Ghanekar, J.H. Wang, S.H. Fan, and M.L. Povinelli, Violation of Kirchhoff’s law of thermal radiation with space–time modulated grating, ACS Photonics, 9(2022), No. 4, p. 1157. doi: 10.1021/acsphotonics.1c01350
|
[38] |
A. Ghanekar, J.H. Wang, C. Guo, S.H. Fan, and M.L. Povinelli, Nonreciprocal thermal emission using spatiotemporal modulation of graphene, ACS Photonics, 10(2022), No. 1, p. 170.
|
[39] |
V.S. Asadchy, M.S. Mirmoosa, A. Díaz-Rubio, S.H. Fan, and S.A. Tretyakov, Tutorial on electromagnetic nonreciprocity and its origins, Proc. IEEE, 108(2020), No. 10, p. 1684. doi: 10.1109/JPROC.2020.3012381
|
[40] |
L.L. Zhou, S.Y. Huang, M. Wang, R. Hu, and X.B. Luo, While rotating while cloaking, Phys. Lett. A, 383(2019), No. 8, p. 759. doi: 10.1016/j.physleta.2018.11.041
|
[41] |
L.J. Xu and J.P. Huang, Negative thermal transport in conduction and advection, Chin. Phys. Lett., 37(2020), No. 8, art. No. 080502. doi: 10.1088/0256-307X/37/8/080502
|
[42] |
X.Y. Huang, C.C. Lu, C. Liang, H.G. Tao, and Y.C. Liu, Loss-induced nonreciprocity, Light. Sci. Appl., 10(2021), No. 1, art. No. 30. doi: 10.1038/s41377-021-00464-2
|
[43] |
X.Y. Huang and Y.C. Liu, Perfect nonreciprocity by loss engineering, Phys. Rev. A, 107(2023), No. 2, art. No. 023703. doi: 10.1103/PhysRevA.107.023703
|
[44] |
Y.S. Su, Y. Li, M.H. Qi, S. Guenneau, H.G. Li, and J. Xiong, Asymmetric heat transfer with linear conductive metamaterials, Phys. Rev. Appl., 20(2023), No. 3, art. No. 034013. doi: 10.1103/PhysRevApplied.20.034013
|
[45] |
W. Muschik, Fundamentals of Nonequilibrium Thermodynamics, , Springer, Vienna, 1993.
|
[46] |
W.J. Mansur, C.A.B. Vasconcellos, N.J.M. Zambrozuski, and O.C. Rotunno Filho, Numerical solution for the linear transient heat conduction equation using an explicit Green’s approach, Int. J. Heat Mass Transf., 52(2009), No. 3-4, p. 694. doi: 10.1016/j.ijheatmasstransfer.2008.07.036
|
[47] |
T.M. Chen, A hybrid Green’s function method for the hyperbolic heat conduction problems, Int. J. Heat Mass Transf., 52(2009), No. 19-20, p. 4273. doi: 10.1016/j.ijheatmasstransfer.2009.04.026
|
[48] |
M. Leindl, E.R. Oberaigner, and T. Antretter, Solution of a time-dependent heat conduction problem by an integral-equation approach, Comput. Mater. Sci., 52(2012), No. 1, p. 178. doi: 10.1016/j.commatsci.2011.07.033
|
[49] |
A. Mandelis, Diffusion-wave Fields : Mathematical Methods and Green Functions, Springer Science & Business Media, Berlin, 2013.
|
[50] |
Y. Li, J.X. Li, M.H. Qi, C.W. Qiu, and H.S. Chen, Diffusive nonreciprocity and thermal diode, Phys. Rev. B, 103(2021), No. 1, art. No. 014307. doi: 10.1103/PhysRevB.103.014307
|
[51] |
G. Wehmeyer, T. Yabuki, C. Monachon, J.Q. Wu, and C. Dames, Thermal diodes, regulators, and switches: Physical mechanisms and potential applications, Appl. Phys. Rev., 4(2017), No. 4, art. No. 041304. doi: 10.1063/1.5001072
|
[52] |
C.W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-state thermal rectifier, Science, 314(2006), No. 5802, p. 1121. doi: 10.1126/science.1132898
|
[53] |
D.B. Go and M. Sen, On the condition for thermal rectification using bulk materials, J. Heat Transf., 132(2010), No. 12, art. No. 1.
|
[54] |
Y. Li, X. Shen, Z. Wu, et al., Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes, Phys. Rev. Lett., 115(2015), No. 19, art. No. 195503. doi: 10.1103/PhysRevLett.115.195503
|
[55] |
X. Shen, Y. Li, C. Jiang, and J. Huang, Temperature trapping: Energy-free maintenance of constant temperatures as ambient temperature gradients change, Phys. Rev. Lett., 117(2016), No. 5, art. No. 055501. doi: 10.1103/PhysRevLett.117.055501
|
[56] |
J. Wang, J. Shang, and J.P. Huang, Negative energy consumption of thermostats at ambient temperature: Electricity generation with zero energy maintenance, Phys. Rev. Appl., 11(2019), No. 2, art. No. 024053. doi: 10.1103/PhysRevApplied.11.024053
|
[57] |
S.D. Lubner, J. Choi, G. Wehmeyer, et al., Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues, Rev. Sci. Instrum., 86(2015), No. 1, art. No. 014905. doi: 10.1063/1.4905680
|
[58] |
R.T. Zheng, J.W. Gao, J.J. Wang, and G. Chen, Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions, Nat. Commun., 2(2011), art. No. 289. doi: 10.1038/ncomms1288
|
[59] |
J.X. Li, Y. Li, P.C. Cao, et al., Reciprocity of thermal diffusion in time-modulated systems, Nat. Commun., 13(2022), art. No. 167. doi: 10.1038/s41467-021-27903-3
|
[60] |
M.A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27(1956), No. 3, p. 240. doi: 10.1063/1.1722351
|
[61] |
P.A. Huidobro, M.G. Silveirinha, E. Galiffi, and J.B. Pendry, Homogenization theory of space-time metamaterials, Phys. Rev. Appl., 16(2021), No. 1, art. No. 014044. doi: 10.1103/PhysRevApplied.16.014044
|
[62] |
L.J. Xu, J.P. Huang, and X.P. Ouyang, Tunable thermal wave nonreciprocity by spatiotemporal modulation, Phys. Rev. E, 103(2021), No. 3, art. No. 032128. doi: 10.1103/PhysRevE.103.032128
|
[63] |
M. Camacho, B. Edwards, and N. Engheta, Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials, Nat. Commun., 11(2020), art. No. 3733. doi: 10.1038/s41467-020-17550-5
|
[64] |
J. Li, Y. Li, P.C. Cao, et al., A continuously tunable solid-like convective thermal metadevice on the reciprocal line, Adv. Mater., 32(2020), No. 42, art. No. e2003823. doi: 10.1002/adma.202003823
|
[65] |
J. Li, Y. Li, W. Wang, L. Li, and C.W. Qiu, Effective medium theory for thermal scattering off rotating structures, Opt. Express, 28(2020), No. 18, p. 25894. doi: 10.1364/OE.399799
|
[66] |
D. Torrent, O. Poncelet, and J.C. Batsale, Nonreciprocal thermal material by spatiotemporal modulation, Phys. Rev. Lett., 120(2018), No. 12, art. No. 125501. doi: 10.1103/PhysRevLett.120.125501
|
[67] |
A.N. No. ris, A.L. Shuvalov, and A.A. Kutsenko, Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems, Proc. R. Soc. A, 468(2012), No. 2142, p. 1629. doi: 10.1098/rspa.2011.0698
|
[68] |
J. Ordonez-Miranda, Y.Y. Guo, J.J. Alvarado-Gil, S. Volz, and M. Nomura, Thermal-wave diode, Phys. Rev. Appl., 16(2021), No. 4, art. No. L041002. doi: 10.1103/PhysRevApplied.16.L041002
|
[69] |
L.J. Xu, G.Q. Xu, J.X. Li, Y. Li, J.P. Huang, and C.W. Qiu, Thermal Willis coupling in spatiotemporal diffusive metamaterials, Phys. Rev. Lett., 129(2022), No. 15, art. No. 155901. doi: 10.1103/PhysRevLett.129.155901
|
[70] |
L.J. Xu, G.Q. Xu, J.P. Huang, and C.W. Qiu, Diffusive fizeau drag in spatiotemporal thermal metamaterials, Phys. Rev. Lett., 128(2022), No. 14, art. No. 145901. doi: 10.1103/PhysRevLett.128.145901
|
[71] |
S.D. Sun, S.F. Liang, W.C. Xu, G.F. Xu, and S. Wu, Photoresponsive polymers with multi-azobenzene groups, Polym. Chem., 10(2019), No. 32, p. 4389. doi: 10.1039/C9PY00793H
|
[72] |
R. Fleury, D.L. Sounas, C.F. Sieck, M.R. Haberman, and A. Alù, Sound isolation and giant linear nonreciprocity in a compact acoustic circulator, Science, 343(2014), No. 6170, p. 516. doi: 10.1126/science.1246957
|
[73] |
L.J. Xu, J.P. Huang, and X.P. Ouyang, Nonreciprocity and isolation induced by an angular momentum bias in convection-diffusion systems, Appl. Phys. Lett., 118(2021), No. 22, art. No. 221902. doi: 10.1063/5.0049774
|
[74] |
Y. Li, Y.G. Peng, L. Han, et al., Anti-parity-time symmetry in diffusive systems, Science, 364(2019), No. 6436, p. 170. doi: 10.1126/science.aaw6259
|
[75] |
L.J. Xu and J.P. Huang, Robust one-way edge state in convection-diffusion systems, EPL Europhys. Lett., 134(2021), No. 6, art. No. 60001. doi: 10.1209/0295-5075/134/60001
|
[76] |
H. Hu, S. Han, Y. Yang, et al., Observation of topological edge states in thermal diffusion, Adv. Mater., 34(2022), No. 31, art. No. e2202257. doi: 10.1002/adma.202202257
|
[77] |
Y. Hatsugai, Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function, Phys. Rev. B: Condens. Matter., 48(1993), No. 16, p. 11851. doi: 10.1103/PhysRevB.48.11851
|
[78] |
L.X. Zhu and S.H. Fan, Near-complete violation of detailed balance in thermal radiation, Phys. Rev. B, 90(2014), No. 22, art. No. 220301. doi: 10.1103/PhysRevB.90.220301
|
[79] |
Z. Chen, L.X. Zhu, W. Li, and S.H. Fan, Simultaneously and synergistically harvest energy from the Sun and outer space, Joule, 3(2019), No. 1, p. 101. doi: 10.1016/j.joule.2018.10.009
|
[80] |
L.X. Zhu, A.P. Raman, and S.H. Fan, Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody, Proc. Natl. Acad. Sci. USA, 112(2015), No. 40, p. 12282. doi: 10.1073/pnas.1509453112
|
[81] |
Z.N. Zhang and L.X. Zhu, Nonreciprocal thermal photonics for energy conversion and radiative heat transfer, Phys. Rev. Appl., 18(2022), No. 2, art. No. 027001. doi: 10.1103/PhysRevApplied.18.027001
|
[82] |
J. Wu, F. Wu, T.C. Zhao, and X.H. Wu, Tunable nonreciprocal thermal emitter based on metal grating and graphene, Int. J. Therm. Sci., 172(2022), art. No. 107316. doi: 10.1016/j.ijthermalsci.2021.107316
|
[83] |
J. Wu and Y.M. Qing, The enhancement of nonreciprocal radiation for light near to normal incidence with double-layer grating, Adv. Compos. Hybrid Mater., 6(2023), No. 3, art. No. 87. doi: 10.1007/s42114-023-00671-y
|
[84] |
J. Wu and Y.M. Qing, Strong nonreciprocal radiation for extreme small incident angle, Int. Commun. Heat Mass Transf., 144(2023), art. No. 106794. doi: 10.1016/j.icheatmasstransfer.2023.106794
|
[85] |
J. Wu and Y.M. Qing, Near-perfect nonreciprocal radiation for extremely small incident angle based on cascaded grating structure, Int. J. Therm. Sci., 190(2023), art. No. 108340. doi: 10.1016/j.ijthermalsci.2023.108340
|
[86] |
B. Zhao, C. Guo, C.A.C. Garcia, P. Narang, and S. Fan, Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals, Nano Lett., 20(2020), No. 3, p. 1923. doi: 10.1021/acs.nanolett.9b05179
|
[87] |
Y. Tsurimaki, X. Qian, S. Pajovic, F. Han, M.D. Li, and G. Chen, Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking, Phys. Rev. B, 101(2020), No. 16, art. No. 165426. doi: 10.1103/PhysRevB.101.165426
|
[88] |
X.H. Wu, H.Y. Yu, F. Wu, and B.Y. Wu, Enhanced nonreciprocal radiation in Weyl semimetals by attenuated total reflection, AIP Adv., 11(2021), No. 7, art. No. 075106. doi: 10.1063/5.0055418
|
[89] |
J. Wu, Z.M. Wang, H. Zhai, Z.X. Shi, X.H. Wu, and F. Wu, Near-complete violation of Kirchhoff’s law of thermal radiation in ultrathin magnetic Weyl semimetal films, Opt. Mater. Express, 11(2021), No. 12, art. No. 4058. doi: 10.1364/OME.444308
|
[90] |
J. Wu and Y.M. Qing, Nonreciprocal thermal emitter for near perpendicular incident light with cascade grating involving weyl semimetal, Mater. Today Phys., 32(2023), art. No. 101025. doi: 10.1016/j.mtphys.2023.101025
|
[91] |
J. Wu, Y.S. Sun, B.Y. Wu, Z.M. Wang, and X.H. Wu, Extremely wide-angle nonreciprocal thermal emitters based on Weyl semimetals with dielectric grating structure, Case Stud. Therm. Eng., 40(2022), art. No. 102566. doi: 10.1016/j.csite.2022.102566
|
[92] |
J. Wu and Y.M. Qing, Tunable near-perfect nonreciprocal radiation with a Weyl semimetal and graphene, Phys. Chem. Chem. Phys., 25(2023), No. 13, p. 9586. doi: 10.1039/D2CP05945B
|
[93] |
M.Q. Liu, C. Zhao, Y.X. Zeng, Y. Chen, C.Y. Zhao, and C.W. Qiu, Evolution and nonreciprocity of loss-induced topological phase singularity pairs, Phys. Rev. Lett., 127(2021), No. 26, art. No. 266101. doi: 10.1103/PhysRevLett.127.266101
|
[94] |
J. Wu and Y.M. Qing, Strong nonreciprocal radiation with topological photonic crystal heterostructure, Appl. Phys. Lett., 121(2022), No. 11, art. No. 112101. doi: 10.1063/5.0107022
|
[95] |
J. Wu, Z.M. Wang, B.Y. Wu, Z.X. Shi, and X.H. Wu, The giant enhancement of nonreciprocal radiation in Thue-morse aperiodic structures, Opt. Laser Technol., 152(2022), art. No. 108138. doi: 10.1016/j.optlastec.2022.108138
|
[96] |
J. Wu, F. Wu, T.C. Zhao, M. Antezza, and X.H. Wu, Dual-band nonreciprocal thermal radiation by coupling optical Tamm states in magnetophotonic multilayers, Int. J. Therm. Sci., 175(2022), art. No. 107457. doi: 10.1016/j.ijthermalsci.2022.107457
|
[97] |
J. Wu and Y.M. Qing, Strong multi-band nonreciprocal radiation with Fibonacci multilayer involving Weyl semimetal, Results Phys., 51(2023), art. No. 106642. doi: 10.1016/j.rinp.2023.106642
|
[98] |
J. Wu and Y.M. Qing, Multichannel nonreciprocal thermal radiation with Weyl semimetal and photonic crystal heterostructure, Case Stud. Therm. Eng., 48(2023), art. No. 103161. doi: 10.1016/j.csite.2023.103161
|
[99] |
J. Wu and Y.M. Qing, A multi-band nonreciprocal thermal emitter involving a Weyl semimetal with a Thue–Morse multilayer, Phys. Chem. Chem. Phys., 25(2023), No. 16, p. 11477. doi: 10.1039/D3CP00492A
|
[100] |
J. Wu, B.Y. Wu, Z.M. Wang, and X.H. Wu, The enhanced nonreciprocal radiation with topological interface states, Opt. Laser Technol., 158(2023), art. No. 108907. doi: 10.1016/j.optlastec.2022.108907
|
[101] |
K.J. Shayegan, B. Zhao, Y. Kim, S. Fan, and H.A. Atwater, Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs, Sci. Adv., 8(2022), No. 18, art. No. eabm4308. doi: 10.1126/sciadv.abm4308
|
[102] |
M.Q. Liu, S. Xia, W.J. Wan, et al., Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films, Nat. Mater., 22(2023), p. 1196. doi: 10.1038/s41563-023-01635-9
|
[103] |
K.J. Shayegan, S. Biswas, B. Zhao, S.H. Fan, and H.A. Atwater, Direct observation of the violation of Kirchhoff’s law of thermal radiation, Nat. Photonics, 17(2023), p. 891. doi: 10.1038/s41566-023-01261-6
|
[104] |
Y. Hadad, J.C. Soric, and A. Alu, Breaking temporal symmetries for emission and absorption, Proc. Natl. Acad. Sci. USA, 113(2016), No. 13, p. 3471. doi: 10.1073/pnas.1517363113
|
[105] |
S. Buddhiraju, W. Li, and S.H. Fan, Photonic refrigeration from time-modulated thermal emission, Phys. Rev. Lett., 124(2020), No. 7, art. No. 077402. doi: 10.1103/PhysRevLett.124.077402
|
[106] |
L.J. Fernández-Alcázar, H.N. Li, M. Nafari, and T. Kottos, Implementation of optimal thermal radiation pumps using adiabatically modulated photonic cavities, ACS Photonics, 8(2021), No. 10, p. 2973. doi: 10.1021/acsphotonics.1c00896
|
[107] |
H.N. Li, L.J. Fernández-Alcázar, F. Ellis, B. Shapiro, and T. Kottos, Adiabatic thermal radiation pumps for thermal photonics, Phys. Rev. Lett., 123(2019), No. 16, art. No. 165901. doi: 10.1103/PhysRevLett.123.165901
|
[108] |
C. Khandekar and A.W. Rodriguez, Near-field thermal upconversion and energy transfer through a Kerr medium, Opt. Express, 25(2017), No. 19, p. 23164. doi: 10.1364/OE.25.023164
|
[109] |
C. Khandekar, R. Messina, and A.W. Rodriguez, Near-field refrigeration and tunable heat exchange through four-wave mixing, AIP Adv., 8(2018), No. 5, art. No. 055029. doi: 10.1063/1.5018734
|
[110] |
J. Li, Z. Zhang, G. Xu, et al., Tunable rectification of diffusion-wave fields by spatiotemporal metamaterials, Phys. Rev. Lett., 129(2022), No. 25, art. No. 256601. doi: 10.1103/PhysRevLett.129.256601
|
[111] |
L.W. Zeng and R.X. Song, Controlling chloride ions diffusion in concrete, Sci. Rep., 3(2013), art. No. 3359. doi: 10.1038/srep03359
|
[112] |
Y. Li, C.B. Liu, Y. Bai, L.J. Qiao, and J. Zhou, Ultrathin hydrogen diffusion cloak, Adv. Theory Simul., 1(2018), No. 1, art. No. 1700004. doi: 10.1002/adts.201700004
|
[113] |
Y. Li, C.B. Liu, P. Li, et al., Scattering cancellation by a monolayer cloak in oxide dispersion-strengthened alloys, Adv. Funct. Mater., 30(2020), No. 36, art. No. 2003270. doi: 10.1002/adfm.202003270
|
[114] |
Y. Li, C.Y. Yu, C.B. Liu, et al., Mass diffusion metamaterials with “plug and switch” modules for ion cloaking, concentrating, and selection: Design and experiments, Adv. Sci., 9(2022), No. 30, art. No. 2201032. doi: 10.1002/advs.202201032
|
[115] |
J.M. Restrepo-Flórez and M. Maldovan, Mass separation by metamaterials, Sci. Rep., 6(2016), art. No. 21971. doi: 10.1038/srep21971
|
[116] |
X. Zhou, G.Q. Xu, and H.Y. Zhang, Binary masses manipulation with composite bilayer metamaterial, Compos. Struct., 267(2021), art. No. 113866. doi: 10.1016/j.compstruct.2021.113866
|
[117] |
Z. Zhang, L. Xu, and J. Huang, Controlling chemical waves by transforming transient mass transfer, Adv. Theor. Simul., 5(2022), No. 3, art. No. 2100375. doi: 10.1002/adts.202100375
|
[118] |
B. Liu, L.J. Xu, and J.P. Huang, Thermal transparency with periodic particle distribution: A machine learning approach, J. Appl. Phys., 129(2021), No. 6, art. No. 065101. doi: 10.1063/5.0039002
|
[119] |
S.A.M. Loos, S. Arabha, A. Rajabpour, A. Hassanali, and É. Roldán, Nonreciprocal forces enable cold-to-hot heat transfer between nanoparticles, Sci. Rep., 13(2023), No. 1, art. No. 4517. doi: 10.1038/s41598-023-31583-y
|