Hui Xu, Lejun Zhou, Wanlin Wang, and Yang Yi, A simple route for preparation of TRIP-assisted Si–Mn steel with excellent performance using direct strip casting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2173-2181. https://doi.org/10.1007/s12613-023-2818-z
Cite this article as:
Hui Xu, Lejun Zhou, Wanlin Wang, and Yang Yi, A simple route for preparation of TRIP-assisted Si–Mn steel with excellent performance using direct strip casting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2173-2181. https://doi.org/10.1007/s12613-023-2818-z
Research Article

A simple route for preparation of TRIP-assisted Si–Mn steel with excellent performance using direct strip casting

+ Author Affiliations
  • Corresponding author:

    Lejun Zhou    E-mail: l.j.zhou@hotmail.com

  • Received: 5 October 2023Revised: 21 December 2023Accepted: 26 December 2023Available online: 27 December 2023
  • The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels (AHSSs). In this study, the direct strip casting (DSC) technology with unique sub-rapid solidification characteristics and cost advantages was applied to the production of low-alloy Si–Mn steel with the help of quenching & partitioning (Q&P) concept to address these issues. Compared this method with the conventional compact strip production (CSP) process, the initial microstructure formed under different solidification conditions and the influence of heat treatment processes on the final mechanical properties were investigated. The results show that the initial structure of the DSC sample is a dual-phase structure composed of fine lath martensite and bainite, while the initial structure of the CSP sample consists of pearlite and ferrite. The volume fraction and carbon content of retained austenite (RA) in DSC samples are usually higher than those in CSP samples after the same Q&P treatment. DSC samples typically demonstrate better comprehensive mechanical properties than the CSP sample. The DSC sample partitioned at 300°C for 300 s (DSC-Pt300) achieves the best comprehensive mechanical properties, with yield strength (YS) of 1282 MPa, ultimate tensile strength (UTS) of 1501 MPa, total elongation (TE) of 21.5%, and product of strength and elongation (PSE) as high as 32.3 GPa·%. These results indicate that the excellent mechanical properties in low-alloy Si–Mn steel can be obtained through a simple process (DSC−Q&P), which also demonstrates the superiority of DSC technology in manufacturing AHSSs.
  • loading
  • [1]
    X.L. Gui, G.H. Gao, H.R. Guo, F.F. Zhao, Z.L. Tan, and B.Z. Bai, Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn–Si–Cr–C steel, Mater. Sci. Eng. A, 684(2017), p. 598. doi: 10.1016/j.msea.2016.12.097
    [2]
    F. Peng, X.L. Gu, and Y.B. Xu, Tailoring austenite stability and mechanical behaviors of IQ&P steel via prior bainite formation, Mater. Sci. Eng. A, 822(2021), art. No. 141663. doi: 10.1016/j.msea.2021.141663
    [3]
    R. Ding, Z.B. Dai, M.X. Huang, Z.G. Yang, C. Zhang, and H. Chen, Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe–0.2C–8Mn–2Al medium Mn steel, Acta Mater., 147(2018), p. 59. doi: 10.1016/j.actamat.2018.01.009
    [4]
    Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
    [5]
    Y. Ma, R. Zheng, Z.Y. Gao, et al., Multiphase-field simulation of austenite reversion in medium-Mn steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 847. doi: 10.1007/s12613-021-2282-6
    [6]
    S. Yan, X.H. Liu, W.J. Liu, H.F. Lan, and H.Y. Wu, Comparison on mechanical properties and microstructure of a C–Mn–Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) processes, Mater. Sci. Eng. A, 620(2015), p. 58. doi: 10.1016/j.msea.2014.09.047
    [7]
    J.P. Lai, J.X. Yu, and J. Wang, Effect of quenching-partitioning treatment on the microstructure, mechanical and abrasive properties of high carbon steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 676. doi: 10.1007/s12613-020-2164-3
    [8]
    J. Zhou, Y.L. Kang, and X.P. Mao, Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production, J. Univ. Sci. Technol. Beijing, 15(2008), No. 4, p. 389. doi: 10.1016/S1005-8850(08)60074-2
    [9]
    S.K. Giri, T. Chanda, S. Chatterjee, and A. Kumar, Hot ductility of C–Mn and microalloyed steels evaluated for thin slab continuous casting process, Mater. Sci. Technol., 30(2014), No. 3, p. 268. doi: 10.1179/1743284713Y.0000000348
    [10]
    L. Yang, Y. Li, Z.L. Xue, and C.G. Cheng, Effect of different thermal schedules on ductility of microalloyed steel slabs during continuous casting, Metals, 9(2019), No. 1, art. No. 37. doi: 10.3390/met9010037
    [11]
    S. Ge, M. Isac, and R.I.L. Guthrie, Progress in strip casting technologies for steel; technical developments, ISIJ Int., 53(2013), No. 5, p. 729. doi: 10.2355/isijinternational.53.729
    [12]
    N. Zapuskalov, Comparison of continuous strip casting with conventional technology, ISIJ Int., 43(2003), No. 8, p. 1115.
    [13]
    Y. Kwon, J.H. Hwang, H.C. Choi, et al., Microstructure and tensile properties of ferritic lightweight steel produced by twin-roll casting, Met. Mater. Int., 26(2020), No. 1, p. 75. doi: 10.1007/s12540-019-00314-2
    [14]
    M. Ferry, Direct Strip Casting Of Metals And Alloys, Woodhead Publishing Limited, Cambridge, 2006.
    [15]
    S. Ge, M. Isac, and R.I.L. Guthrie, Progress of strip casting technology for steel; Historical developments, ISIJ Int., 52(2012), No. 12, p. 2109. doi: 10.2355/isijinternational.52.2109
    [16]
    Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting, Mater. Des., 88(2015), p. 537. doi: 10.1016/j.matdes.2015.09.031
    [17]
    Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation, Mater. Sci. Eng. A, 651(2016), p. 291. doi: 10.1016/j.msea.2015.10.120
    [18]
    J.Y. Park, K.H. Oh, and H.Y. Ra, The effects of superheating on texture and microstructure of Fe–4.5wt%Si steel strip by twin-roll strip casting, ISIJ Int., 41(2001), No. 1, p. 70. doi: 10.2355/isijinternational.41.70
    [19]
    M.F. Lan, Y.X. Zhang, F. Fang, et al., Effect of annealing after strip casting on microstructure, precipitates and texture in non-oriented silicon steel produced by twin-roll strip casting, Mater. Charact., 142(2018), p. 531. doi: 10.1016/j.matchar.2018.06.016
    [20]
    Z.Y. Liu, Z.S. Lin, S.H. Wang, Y.Q. Qiu, X.H. Liu, and G.D. Wang, Microstructure characterization of austenitic Fe–25Mn–22Cr–2Si–0.7N alloy processed by twin roll strip casting, Mater. Charact., 58(2007), No. 10, p. 974. doi: 10.1016/j.matchar.2006.10.005
    [21]
    M. Daamen, C. Haase, J. Dierdorf, D.A. Molodov, and G. Hirt, Twin-roll strip casting: A competitive alternative for the production of high-manganese steels with advanced mechanical properties, Mater. Sci. Eng. A, 627(2015), p. 72. doi: 10.1016/j.msea.2014.12.069
    [22]
    C.J. Song, W. Lu, K. Xie, et al., Microstructure and mechanical properties of sub-rapidly solidified Fe–18 wt%Mn–C alloy strip, Mater. Sci. Eng. A, 610(2014), p. 145. doi: 10.1016/j.msea.2014.05.033
    [23]
    N. Yamauchi, A. Okamoto, H. Tukahara, et al., Friction and wear of DLC films on 304 austenitic stainless steel in corrosive solutions, Surf. Coat. Technol., 174-175(2003), p. 465. doi: 10.1016/S0257-8972(03)00406-7
    [24]
    K. Mukunthan, P.D. Hodgson, P. Sellamuthu, L. Strezov, Y. Durandet, and N. Stanford, Castability and microstructural development of iron-based alloys under conditions pertinent to strip casting–specialty Fe–Cr–Al alloys, ISIJ Int., 53(2013), No. 10, p. 1803. doi: 10.2355/isijinternational.53.1803
    [25]
    L. Liu, B.B. He, G.J. Cheng, H.W. Yen, and M.X. Huang, Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite, Scripta Mater., 150(2018), p. 1. doi: 10.1016/j.scriptamat.2018.02.035
    [26]
    P.S. Lyu, W.L. Wang, C.H. Wang, L.J. Zhou, Y. Fang, and J.C. Wu, Effect of sub-rapid solidification and secondary cooling on microstructure and properties of strip cast low-carbon bainitic–martensitic steel, Metall. Mater. Trans. A, 52(2021), No. 9, p. 3945. doi: 10.1007/s11661-021-06356-9
    [27]
    H. Xu, W.L. Wang, C. Lu, P.S. Lv, and C.Y. Zhu, Evolution of solidification structure for Si–Mn bearing AHSS under typical cooling rates, J. Mater. Res. Technol., 15(2021), p. 524. doi: 10.1016/j.jmrt.2021.08.057
    [28]
    R. Ranjan, H. Beladi, S.B. Singh, and P.D. Hodgson, Thermo-mechanical processing of TRIP-aided steels, Metall. Mater. Trans. A, 46(2015), No. 7, p. 3232. doi: 10.1007/s11661-015-2885-5
    [29]
    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003), No. 9, p. 2611. doi: 10.1016/S1359-6454(03)00059-4
    [30]
    S.Z. Yin, A. Howells, D.J. Lloyd, M. Gallerneault, and V. Fallah, Thin strip vs direct chill casting: The effects of casting cooling rate on the As-cast microstructure of AA6005 Al–Si–Mg alloy, Metall. Mater. Trans. A, 53(2022), No. 6, p. 1928. doi: 10.1007/s11661-022-06675-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(389) PDF Downloads(27) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return