Cite this article as: |
Ruofeng Wang, Shuai Yuan, Yanjun Li, Peng Gao, and Ru Li, Hydrogen-based mineral phase transformation mechanism investigation of pyrolusite ore, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2445-2457. https://doi.org/10.1007/s12613-023-2819-y |
Shuai Yuan E-mail: yuanshuai_neu@163.com
[1] |
M.J. Shi, H.T. Zhu, C. Chen, J.T. Jiang, L.P. Zhao, and C. Yan, Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 25. doi: 10.1007/s12613-022-2441-4
|
[2] |
W. Chen, G.D. Li, A. Pei, et al., A manganese–hydrogen battery with potential for grid-scale energy storage, Nat. Energy, 3(2018), p. 428. doi: 10.1038/s41560-018-0147-7
|
[3] |
T. Keller and I. Baker, Manganese-based permanent magnet materials, Prog. Mater. Sci., 124(2022), art. No. 100872. doi: 10.1016/j.pmatsci.2021.100872
|
[4] |
D.Y. Chung, P.J. Heaney, J.E. Post, J.E. Stubbs, and P.J. Eng, Synchrotron X-ray diffraction of pyrolusite (MnO2) and rutile (TiO2) during heating to ~1000°C, J. Phys. Chem. Solids, 177(2023), art. No. 111284. doi: 10.1016/j.jpcs.2023.111284
|
[5] |
B.B. Liu, L. Zhang, Y.B. Zhang, G.H. Han, and B. Zhang, Innovative methodology for co-treatment of mill scale scrap and manganese ore via oxidization roasting-magnetic separation for preparation of ferrite materials, Ceram. Int., 47(2021), No. 5, p. 6139. doi: 10.1016/j.ceramint.2020.10.193
|
[6] |
X.Y. Deng, Y.L. Feng, H.R. Li, Z.W. Du, J.X. Kang, and C.L. Guo, Preparation of sodium manganate from low-grade pyrolusite by alkaline predesilication–fluidized roasting technique, Trans. Nonferrous Met. Soc. China, 28(2018), No. 5, p. 1045. doi: 10.1016/S1003-6326(18)64742-9
|
[7] |
K.Q. Li, J. Chen, J.H. Peng, M. Omran, and G. Chen, Efficient improvement for dissociation behavior and thermal decomposition of manganese ore by microwave calcination, J. Cleaner Prod., 260(2020), art. No. 121074. doi: 10.1016/j.jclepro.2020.121074
|
[8] |
H.M. Baioumy, M.Z. Khedr, and A.H. Ahmed, Mineralogy, geochemistry and origin of Mn in the high-Mn iron ores, Bahariya Oasis, Egypt, Ore Geol. Rev., 53(2013), p. 63. doi: 10.1016/j.oregeorev.2012.12.009
|
[9] |
J. Liu, R. He, X. Xing, Z. Wang, and T. Xiong, Insight into mineralogy of a low-grade manganese ore for separation, J. Min. Sci., 57(2021), No. 6, p. 1049. doi: 10.1134/S1062739121060181
|
[10] |
B.B. Liu, Y.B. Zhang, M.M. Lu, Z.J. Su, G.H. Li, and T. Jiang, Extraction and separation of manganese and iron from ferruginous manganese ores: A review, Miner. Eng., 131(2019), p. 286. doi: 10.1016/j.mineng.2018.11.016
|
[11] |
D.J. Liu, L. Gao, G. Chen, et al., Enhancement effects of distiller’s dried grains as reducing agents on the kinetics and leaching of pyrolusite from manganese ore, J. Mater. Res. Technol., 19(2022), p. 4270. doi: 10.1016/j.jmrt.2022.07.005
|
[12] |
C. Yang, X.X. Duan, X.F. Zhang, et al., Acid-free extraction of manganese from pyrolusite tailings by in situ redox interaction with waste copperas, Process. Saf. Environ. Prot., 169(2023), p. 149. doi: 10.1016/j.psep.2022.11.026
|
[13] |
S. Keshavarz, F. Faraji, F. Rashchi, and M. Mokmeli, Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus Niger: Process optimization and kinetic studies, J. Environ. Manage., 285(2021), art. No. 112153. doi: 10.1016/j.jenvman.2021.112153
|
[14] |
J.X. Kang, Y.L. Feng, H.R. Li, Z.W. Du, X.Y. Deng, and H.J. Wang, New understanding of the reduction mechanism of pyrolusite in the Acidithiobacillus ferrooxidans bio-leaching system, Electrochim. Acta, 297(2019), p. 443. doi: 10.1016/j.electacta.2018.12.031
|
[15] |
J.R. Lan, Y. Sun, L. Guo, Z.M. Li, D.Y. Du, and T.C. Zhang, A novel method to recover ammonia, manganese and sulfate from electrolytic manganese residues by bio-leaching, J. Cleaner Prod., 223(2019), p. 499. doi: 10.1016/j.jclepro.2019.03.098
|
[16] |
K.Q. Li, J. Chen, J.H. Peng, R. Ruan, C. Srinivasakannan, and G. Chen, Pilot-scale study on enhanced carbothermal reduction of low-grade pyrolusite using microwave heating, Powder Technol., 360(2020), p. 846. doi: 10.1016/j.powtec.2019.11.015
|
[17] |
J. Chen, F. He, L. Gao, S.H. Guo, M. Omran, and G. Chen, Rapid preparation of manganese monoxide by microwave-enhanced selective carbothermal reduction, Front. Energy Res., 10(2022), art. No. 845303. doi: 10.3389/fenrg.2022.845303
|
[18] |
J.R. Ju, R.Y. Ma, Y.H. Li, et al., An efficient and clean method for the selective extraction and recovery of manganese from pyrolusite using ammonium sulfate roasting-water leaching and carbonate precipitation, Miner. Eng., 203(2023), art. No. 108356. doi: 10.1016/j.mineng.2023.108356
|
[19] |
Y.L. Feng, Z.L. Cai, H.R. Li, Z.W. Du, and X.W. Liu, Fluidized roasting reduction kinetics of low-grade pyrolusite coupling with pretreatment of stone coal, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 221. doi: 10.1007/s12613-013-0716-5
|
[20] |
K.D. Yang, X.J. Ye, J. Su, et al., Response surface optimization of process parameters for reduction roasting of low-grade pyrolusite by bagasse, Trans. Nonferrous Met. Soc. China, 23(2013), No. 2, p. 548. doi: 10.1016/S1003-6326(13)62498-X
|
[21] |
K.Q. Li, G. Chen, X.T. Li, et al., High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field, Bioresour. Technol., 294(2019), art. No. 122217. doi: 10.1016/j.biortech.2019.122217
|
[22] |
H. Wu, Y.L. Feng, H.R. Li, H.J. Wang, and J.R. Ju, Co-recovery of manganese from pyrolusite and gold from carbonaceous gold ore using fluidized roasting coupling technology, Chem. Eng. Process., 147(2020), art. No. 107742. doi: 10.1016/j.cep.2019.107742
|
[23] |
B. Zhao, X.Y. Kong, Y.S. Sun, Y.X. Han, and Y.J. Li, Novel metallic Fe recovery from copper smelting slag by the deep reduction method with renewable biochar reducing agent: Phase transformation process and Fe particle growth optimization, Process. Saf. Environ. Prot., 175(2023), p. 303. doi: 10.1016/j.psep.2023.05.036
|
[24] |
J.Y. Zhu, Q. Liu, Z. Zou, Q.S. Zhu, H.Z. Li, and H.R. Li, CFD simulation for reduction of pyrolusite in fluidized beds, Particuology, 79(2023), p. 109. doi: 10.1016/j.partic.2022.10.011
|
[25] |
J.G. Li and B.L. Yang, Multi-scale CFD simulations of bubbling fluidized bed methanation process, Chem. Eng. J., 377(2019), art. No. 119818. doi: 10.1016/j.cej.2018.08.204
|
[26] |
D. Ngoy, D. Sukhomlinov, and M. Tangstad, Pre-reduction behaviour of manganese ores in H2 and CO containing gases, ISIJ Int., 60(2020), No. 11, p. 2325. doi: 10.2355/isijinternational.ISIJINT-2020-120
|
[27] |
C.H. Eom and D.J. Min, Kinetics of the formation reaction of manganese carbide under various gases, Met. Mater. Int., 22(2016), No. 1, p. 129. doi: 10.1007/s12540-015-5419-1
|
[28] |
X.D. Mao, P. Garg, X.J. Hu, et al., Kinetic analysis of iron ore powder reaction with hydrogen–carbon monoxide, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1882. doi: 10.1007/s12613-022-2512-6
|
[29] |
A. Cheraghi, H. Yoozbashizadeh, and J. Safarian, Gaseous reduction of manganese ores: A review and theoretical insight, Miner. Process. Extr. Metall. Rev., 41(2020), No. 3, p. 198. doi: 10.1080/08827508.2019.1604523
|
[30] |
B.B. Liu, Y.B. Zhang, Z.J. Su, Z.W. Peng, G.H. Li, and T. Jiang, Thermodynamic analysis and reduction of MnO2 by methane–hydrogen gas mixture, JOM, 69(2017), No. 9, p. 1669. doi: 10.1007/s11837-017-2456-x
|
[31] |
N. Anacleto, O. Ostrovski, and S. Ganguly, Reduction of manganese oxides by methane-containing gas, ISIJ Int., 44(2004), No. 9, p. 1480. doi: 10.2355/isijinternational.44.1480
|
[32] |
L. Wang, P.M. Guo, L.B. Kong, and P. Zhao, Industrial application prospects and key issues of the pure-hydrogen reduction process, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1922. doi: 10.1007/s12613-022-2478-4
|
[33] |
H. Zheng, O. Daghagheleh, T. Wolfinger, B. Taferner, J. Schenk, and R.S. Xu, Fluidization behavior and reduction kinetics of pre-oxidized magnetite-based iron ore in a hydrogen-induced fluidized bed, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1873. doi: 10.1007/s12613-022-2511-7
|
[34] |
J.R. Lan, Y. Sun, Y.G. Du, D.Y. Du, T.C. Zhang, and J. Li, Environmentally-friendly bioleaching of manganese from pyrolusite: Performance and mechanisms, J. Cleaner Prod., 249(2020), art. No. 119354. doi: 10.1016/j.jclepro.2019.119354
|
[35] |
K.J. Laidler, The development of the Arrhenius equation, J. Chem. Educ., 61(1984), No. 6, art. No. 494. doi: 10.1021/ed061p494
|
[36] |
X. Liu, P. Gao, S. Yuan, Y. Lv, and Y.X. Han, Clean utilization of high-iron red mud by suspension magnetization roasting, Miner. Eng., 157(2020), art. No. 106553. doi: 10.1016/j.mineng.2020.106553
|
[37] |
S. Yuan, X. Wang, H. Zhang, Y.J. Li, and X. Liu, Experimental and mechanism research of the effects of alkali on the reduction reaction of hematite during roasting reduction reaction, Adv. Powder Technol., 33(2022), No. 6, art. No. 103592. doi: 10.1016/j.apt.2022.103592
|
[38] |
S. Yuan, Y.H. Qin, Y.P. Jin, and Y.J. Li, Suspension roasting process of vanadium-bearing stone coal: Characterization, kinetics and thermodynamics, Trans. Nonferrous Met. Soc. China, 32(2022), No. 11, p. 3767. doi: 10.1016/S1003-6326(22)66056-4
|
[39] |
X.J. Xie, C. Lu, R. Xu, X.Q. Yang, L. Yan, and C.L. Su, Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: Performance and mechanism, Sci. Total Environ., 806(2022), art. No. 150615. doi: 10.1016/j.scitotenv.2021.150615
|
[40] |
F.X. Tian, M.H. Zhu, X.L. Liu, W.F. Tu, and Y.F. Han, Dynamic structure of highly disordered manganese oxide catalysts for low-temperature CO oxidation, J. Catal., 401(2021), p. 115. doi: 10.1016/j.jcat.2021.07.016
|
[41] |
D.X. Gong, H. Tong, J.P. Xiao, et al., Self-standing manganese dioxide/graphene carbon nanotubes film electrode for symmetric supercapacitor with high energy density and superior long cycling stability, Ceram. Int., 47(2021), No. 23, p. 33020. doi: 10.1016/j.ceramint.2021.08.202
|
[42] |
A. Derri, M. Guezzoul, A. Mokadem, et al., Insight into the photoluminescence and morphological characteristics of transition metals (TM = Mn, Ni, Co, Cu)-doped ZnO semiconductor: A comparative study, Opt. Mater., 145(2023), art. No. 114467. doi: 10.1016/j.optmat.2023.114467
|
[43] |
N. Abinaya, M.C. Robert, N. Srinivasan, and S. Saravanakumar, Electron density mapping and bonding in Mn doped CoFe2O4 using XRD, and its correlation with room temperature optical and magnetic properties, J. Magn. Magn. Mater., 580(2023), art. No. 170938. doi: 10.1016/j.jmmm.2023.170938
|
[44] |
C.S. Shao, C.Y. Ding, S.S. Wu, et al., Ultrahigh concentration surface oxygen vacancies in ferrite foams for broadened electromagnetic absorption bandwidth, Mater. Res. Bull., 167(2023), art. No. 112411. doi: 10.1016/j.materresbull.2023.112411
|
[45] |
J.W. Yu, Y.X. Han, Y.J. Li, P. Gao, and W.B. Li, Mechanism and kinetics of the reduction of hematite to magnetite with CO–CO2 in a micro-fluidized bed, Minerals, 7(2017), No. 11, art. No. 209. doi: 10.3390/min7110209
|
[46] |
S. Yuan, Q. Zhang, H. Yin, and Y.J. Li, Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution, J. Hazard. Mater., 404(2021), art. No. 124067. doi: 10.1016/j.jhazmat.2020.124067
|
[47] |
S. Vyazovkin and C.A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochim. Acta, 340(1999), p. 53.
|
[48] |
S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520(2011), No. 1-2, p. 1. doi: 10.1016/j.tca.2011.03.034
|
[49] |
K.Q. Li, Q. Jiang, G. Chen, et al., Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends, Bioresour. Technol., 319(2021), art. No. 124172. doi: 10.1016/j.biortech.2020.124172
|