Cite this article as: |
Yarong Xue, Xueqiu He, Dazhao Song, Zhenlei Li, Majid Khan, Taoping Zhong, and Fei Yang, Energy evolution and structural health monitoring of coal under different failure modes: An experimental study, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 917-928. https://doi.org/10.1007/s12613-024-2822-y |
Xueqiu He E-mail: hexq@ustb.edu.cn
Supplementary Information-s12613-024-2822-y.docx |
[1] |
P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705. doi: 10.1007/s12613-022-2464-x
|
[2] |
M. Wu, Y.C. Ye, Q.H. Wang, and N.Y. Hu, Development of rockburst research: A comprehensive review, Appl. Sci., 12(2022), No. 3, art. No. 974. doi: 10.3390/app12030974
|
[3] |
S.Q. He, D.Z. Song, X.Q. He, et al., Coupled mechanism of compression and prying-induced rock burst in steeply inclined coal seams and principles for its prevention, Tunnelling Underground Space Technol., 98(2020), art. No. 103327. doi: 10.1016/j.tust.2020.103327
|
[4] |
X.Q. He, C. Zhou, D.Z. Song, et al., Mechanism and monitoring and early warning technology for rockburst in coal mines, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1097. doi: 10.1007/s12613-021-2267-5
|
[5] |
Y.K. Ma, B.S. Nie, X.Q. He, X.C. Li, J.Q. Meng, and D.Z. Song, Mechanism investigation on coal and gas outburst: An overview, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 872. doi: 10.1007/s12613-019-1956-9
|
[6] |
H.P. Xie, L.Y. Li, R.D. Peng, and Y. Ju, Energy analysis and criteria for structural failure of rocks, J. Rock Mech. Geotech. Eng., 1(2009), No. 1, p. 11. doi: 10.3724/SP.J.1235.2009.00011
|
[7] |
H.P. Xie, Y. Ju, L.Y. Li, and R.D. Peng, Energy mechanism of deformation and failure of rock masses, Chin. J. Rock Mech. Eng., 27(2008), No. 9, p. 1729.
|
[8] |
H.P. Xie, R.D. Peng, Y. Ju, and H.W. Zhou, On energy analysis of rock failure, Chin. J. Rock Mech. Eng., 24(2005), No. 15, p. 2603.
|
[9] |
H.P. Xie, Y. Ju, and L.Y. Li, Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles, Chin. J. Rock Mech. Eng., 24(2005), No. 17, p. 3003.
|
[10] |
H.P. Xie, R.D. Peng, and Y. Ju, Energy dissipation of rock deformation and fracture, Chin. J. Rock Mech. Eng., 23(2004), No. 21, p. 3565.
|
[11] |
F.Q. Gong, J.Y. Yan, S. Luo, and X.B. Li, Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4237. doi: 10.1007/s00603-019-01842-4
|
[12] |
F.Q. Gong, J.Y. Yan, X.B. Li, and S. Luo, A peak-strength strain energy storage index for rock burst proneness of rock materials, Int. J. Rock Mech. Min. Sci., 117(2019), p. 76. doi: 10.1016/j.ijrmms.2019.03.020
|
[13] |
Z.Q. Chen, C. He, G.Y. Ma, G.W. Xu, and C.C. Ma, Energy damage evolution mechanism of rock and its application to brittleness evaluation, Rock Mech. Rock Eng., 52(2019), No. 4, p. 1265. doi: 10.1007/s00603-018-1681-0
|
[14] |
D.Y. Li, Z. Sun, T. Xie, X.B. Li, and P.G. Ranjith, Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths, Eng. Geol., 228(2017), p. 270. doi: 10.1016/j.enggeo.2017.08.006
|
[15] |
B.Q. Cui, G.R. Feng, J.W. Bai, et al., Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1524. doi: 10.1007/s12613-022-2545-x
|
[16] |
Y.D. Jiang, H.T. Li, Y.X. Zhao, and K. Zhou, Effect of loading rate on energy accumulation and dissipation in rocks, J. China Univ. Min. Technol., 43(2014), No. 3, p. 369.
|
[17] |
W.B. Shen, W.J. Yu, B. Pan, and K. Li, Rock mechanical failure characteristics and energy evolution analysis of coal-rock combination with different dip angles, Arabian. J. Geosci., 15(2022), No. 1, art. No. 93. doi: 10.1007/s12517-021-09268-5
|
[18] |
L. Gao, F. Gao, Z.Z. Zhang, and Y. Xing, Research on the energy evolution characteristics and the failure intensity of rocks, Int. J. Min. Sci. Technol., 30(2020), No. 5, p. 705. doi: 10.1016/j.ijmst.2020.06.006
|
[19] |
P. Li, M.F. Cai, P.T. Wang, Q.F. Guo, S.J. Miao, and F.H. Ren, Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1875. doi: 10.1007/s12613-020-2237-3
|
[20] |
G.B. Chen, J.W. Zhang, Y.L. He, G.H. Zhang, and T. Li, Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body, Rock Soil Mech., 43(2022), Suppl. 2, p. 130.
|
[21] |
X.C. Xiao, Y.F. Fan, D. Wu, X. Ding, L. Wang, and B.Y. Zhao, Energy dissipation feature and rock burst risk assessment in coal-rock combinations, Rock Soil Mech., 40(2019), No. 11, p. 4203.
|
[22] |
A.W. Wang, Q.S. Gao, Y.S. Pan, Y.M. Song, and L. Li, Bursting liability and energy dissipation laws of prefabricated borehole coal samples, J. China Coal Soc., 46(2021), No. 3, p. 959.
|
[23] |
H. Yu, S.W. Liu, H.S. Jia, and S.L. Wang, Mechanical response and energy dissipation mechanism of closed single fractured sandstone under different confining pressures, J. Min. Saf. Eng., 37(2020), No. 2, p. 385.
|
[24] |
P. Wang, J.Y. Xu, X.Y. Fang, and P.X. Wang, Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles, Eng. Geol., 221(2017), p. 104. doi: 10.1016/j.enggeo.2017.02.025
|
[25] |
S. Yin, D.Z. Song, X.Q. He, et al., Structural health monitoring of building rock based on stress drop and acoustic-electric energy release, Struct. Control Health Monit., 29(2022), No. 2, art. No. e2875.
|
[26] |
J.G. Ning, J. Wang, J.Q. Jiang, S.C. Hu, L.S. Jiang, and X.S. Liu, Estimation of crack initiation and propagation thresholds of confined brittle coal specimens based on energy dissipation theory, Rock Mech. Rock Eng., 51(2018), No. 1, p. 119. doi: 10.1007/s00603-017-1317-9
|
[27] |
Q.F. Ma, Z.H. Liu, Y.P. Qin, T.H. Jing, and S.L. Wang, Rock plastic-damage constitutive model based on energy dissipation, Rock Soil Mech., 42(2021), art. No. 1210.
|
[28] |
F.Q. Gong, Y.L. Wang, Z.G. Wang, J.F. Pan, and S. Luo, A new criterion of coal burst proneness based on the residual elastic energy index, Int. J. Min. Sci. Technol., 31(2021), No. 4, p. 553. doi: 10.1016/j.ijmst.2021.04.001
|
[29] |
F.Q. Gong, Y.L. Wang, and S. Luo, Rockburst proneness criteria for rock materials: Review and new insights, J. Cent. South Univ., 27(2020), No. 10, p. 2793. doi: 10.1007/s11771-020-4511-y
|
[30] |
Z.Z. Zhang and F. Gao, Experimental investigation on the energy evolution of dry and water-saturated red sandstones, Int. J. Min. Sci. Technol., 25(2015), No. 3, p. 383. doi: 10.1016/j.ijmst.2015.03.009
|
[31] |
D.Z. Song, E.Y. Wang, and J. Liu, Relationship between EMR and dissipated energy of coal rock mass during cyclic loading process, Saf. Sci., 50(2012), No. 4, p. 751. doi: 10.1016/j.ssci.2011.08.039
|
[32] |
R. Solecki and R.J. Conant, Advanced Mechanics of Materials, Oxford University Press, London, 2003.
|
[33] |
M.H. Wei, D.Z. Song, X.Q. He, Q. Lou, L.M. Qiu, and Z.L. Li, Characteristics of electromagnetic vector field generated from rock fracturing, J. Rock Mech. Geotech. Eng., 15(2023), No. 2, p. 457. doi: 10.1016/j.jrmge.2022.07.002
|
[34] |
S. Yin, D.Z. Song, X.Q. He, et al., Time-frequency evolution law and generation mechanism of electromagnetic radiation in coal friction process, Eng. Geol., 294(2021), art. No. 106377. doi: 10.1016/j.enggeo.2021.106377
|
[35] |
H.L. Wang, D.Z. Song, Z.L. Li, X.Q. He, S.R. Lan, and H.F. Guo, Acoustic emission characteristics of coal failure using automatic speech recognition methodology analysis, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104472. doi: 10.1016/j.ijrmms.2020.104472
|
[36] |
D.Z. Song, X.Q. He, E.Y. Wang, Z.L. Li, and J. Liu, Rockburst Evolutionary Process and Energy Dissipation Characteristics, Springer, Singapore, 2020.
|
[37] |
G. Lacidogna, F. Accornero, and A. Carpinteri, Influence of snap-back instabilities on Acoustic Emission damage monitoring, Eng. Fract. Mech., 210(2019), p. 3.
|