Yarong Xue, Xueqiu He, Dazhao Song, Zhenlei Li, Majid Khan, Taoping Zhong, and Fei Yang, Energy evolution and structural health monitoring of coal under different failure modes: an experimental study, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2822-y
Cite this article as:
Yarong Xue, Xueqiu He, Dazhao Song, Zhenlei Li, Majid Khan, Taoping Zhong, and Fei Yang, Energy evolution and structural health monitoring of coal under different failure modes: an experimental study, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2822-y
Research Article

Energy evolution and structural health monitoring of coal under different failure modes: an experimental study

+ Author Affiliations
  • Corresponding author:

    Xueqiu He    E-mail: hexq@ustb.edu.cn

  • Received: 10 August 2023Revised: 27 December 2023Accepted: 2 January 2024Available online: 3 January 2024
  • Structural instability in underground engineering, especially in coal–rock structures, poses significant safety risks. Thus, the development of an accurate monitoring method for the health of coal–rock bodies is crucial. The focus of this work is on understanding energy evolution patterns in coal–rock bodies under complex conditions by using shear, splitting, and uniaxial compression tests. We examine the changes in energy parameters during various loading stages and the effects of various failure modes, resulting in an innovative energy dissipation-based health evaluation technique for coal. Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading, indicated by fluctuations in elastic energy and dissipation energy density. For tensile failure, the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress. On the other hand, shear failure is described by “high accumulation and low dissipation” in energy trends. Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization, and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples. A novel mathematical and statistical approach is developed, establishing a dissipation energy anomaly index, W, which categorizes the structural health of coal into different danger levels. This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments, contributing to the development of structural health monitoring technology.
  • loading
  • Supplementary Information-s12613-024-2822-y.docx
  • [1]
    P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705. doi: 10.1007/s12613-022-2464-x
    [2]
    M. Wu, Y.C. Ye, Q.H. Wang, and N.Y. Hu, Development of rockburst research: A comprehensive review, Appl. Sci., 12(2022), No. 3, art. No. 974. doi: 10.3390/app12030974
    [3]
    S.Q. He, D.Z. Song, X.Q. He, et al., Coupled mechanism of compression and prying-induced rock burst in steeply inclined coal seams and principles for its prevention, Tunnelling Underground Space Technol., 98(2020), art. No. 103327. doi: 10.1016/j.tust.2020.103327
    [4]
    X.Q. He, C. Zhou, D.Z. Song, et al., Mechanism and monitoring and early warning technology for rockburst in coal mines, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1097. doi: 10.1007/s12613-021-2267-5
    [5]
    Y.K. Ma, B.S. Nie, X.Q. He, X.C. Li, J.Q. Meng, and D.Z. Song, Mechanism investigation on coal and gas outburst: An overview, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 872. doi: 10.1007/s12613-019-1956-9
    [6]
    H.P. Xie, L.Y. Li, R.D. Peng, and Y. Ju, Energy analysis and criteria for structural failure of rocks, J. Rock Mech. Geotech. Eng., 1(2009), No. 1, p. 11. doi: 10.3724/SP.J.1235.2009.00011
    [7]
    H.P. Xie, Y. Ju, L.Y. Li, and R.D. Peng, Energy mechanism of deformation and failure of rock masses, Chin. J. Rock Mech. Eng., 27(2008), No. 9, p. 1729.
    [8]
    H.P. Xie, R.D. Peng, Y. Ju, and H.W. Zhou, On energy analysis of rock failure, Chin. J. Rock Mech. Eng., 24(2005), No. 15, p. 2603.
    [9]
    H.P. Xie, Y. Ju, and L.Y. Li, Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles, Chin. J. Rock Mech. Eng., 24(2005), No. 17, p. 3003.
    [10]
    H.P. Xie, R.D. Peng, and Y. Ju, Energy dissipation of rock deformation and fracture, Chin. J. Rock Mech. Eng., 23(2004), No. 21, p. 3565.
    [11]
    F.Q. Gong, J.Y. Yan, S. Luo, and X.B. Li, Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4237. doi: 10.1007/s00603-019-01842-4
    [12]
    F.Q. Gong, J.Y. Yan, X.B. Li, and S. Luo, A peak-strength strain energy storage index for rock burst proneness of rock materials, Int. J. Rock Mech. Min. Sci., 117(2019), p. 76. doi: 10.1016/j.ijrmms.2019.03.020
    [13]
    Z.Q. Chen, C. He, G.Y. Ma, G.W. Xu, and C.C. Ma, Energy damage evolution mechanism of rock and its application to brittleness evaluation, Rock Mech. Rock Eng., 52(2019), No. 4, p. 1265. doi: 10.1007/s00603-018-1681-0
    [14]
    D.Y. Li, Z. Sun, T. Xie, X.B. Li, and P.G. Ranjith, Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths, Eng. Geol., 228(2017), p. 270. doi: 10.1016/j.enggeo.2017.08.006
    [15]
    B.Q. Cui, G.R. Feng, J.W. Bai, et al., Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1524. doi: 10.1007/s12613-022-2545-x
    [16]
    Y.D. Jiang, H.T. Li, Y.X. Zhao, and K. Zhou, Effect of loading rate on energy accumulation and dissipation in rocks, J. China Univ. Min. Technol., 43(2014), No. 3, p. 369.
    [17]
    W.B. Shen, W.J. Yu, B. Pan, and K. Li, Rock mechanical failure characteristics and energy evolution analysis of coal-rock combination with different dip angles, Arabian. J. Geosci., 15(2022), No. 1, art. No. 93. doi: 10.1007/s12517-021-09268-5
    [18]
    L. Gao, F. Gao, Z.Z. Zhang, and Y. Xing, Research on the energy evolution characteristics and the failure intensity of rocks, Int. J. Min. Sci. Technol., 30(2020), No. 5, p. 705. doi: 10.1016/j.ijmst.2020.06.006
    [19]
    P. Li, M.F. Cai, P.T. Wang, Q.F. Guo, S.J. Miao, and F.H. Ren, Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1875. doi: 10.1007/s12613-020-2237-3
    [20]
    G.B. Chen, J.W. Zhang, Y.L. He, G.H. Zhang, and T. Li, Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body, Rock Soil Mech., 43(2022), No. S2, p. 130.
    [21]
    X.C. Xiao, Y.F. Fan, D. Wu, X. Ding, L. Wang, and B.Y. Zhao, Energy dissipation feature and rock burst risk assessment in coal-rock combinations, Rock Soil Mech., 40(2019), No. 11, p. 4203.
    [22]
    A.W. Wang, Q.S. Gao, Y.S. Pan, Y.M. Song, and L. Li, Bursting liability and energy dissipation laws of prefabricated borehole coal samples, J. China Coal Soc., 46(2021), No. 3, p. 959.
    [23]
    H. Yu, S.W. Liu, H.S. Jia, and S.L. Wang, Mechanical response and energy dissipation mechanism of closed single fractured sandstone under different confining pressures, J. Min. Saf. Eng., 37(2020), No. 2, p. 385.
    [24]
    P. Wang, J.Y. Xu, X.Y. Fang, and P.X. Wang, Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles, Eng. Geol., 221(2017), p. 104. doi: 10.1016/j.enggeo.2017.02.025
    [25]
    S. Yin, D.Z. Song, X.Q. He, et al., Structural health monitoring of building rock based on stress drop and acoustic-electric energy release, Struct. Control Health Monit., 29(2022), No. 2, art. No. e2875.
    [26]
    J.G. Ning, J. Wang, J.Q. Jiang, S.C. Hu, L.S. Jiang, and X.S. Liu, Estimation of crack initiation and propagation thresholds of confined brittle coal specimens based on energy dissipation theory, Rock Mech. Rock Eng., 51(2018), No. 1, p. 119. doi: 10.1007/s00603-017-1317-9
    [27]
    Q.F. Ma, Z.H. Liu, Y.P. Qin, T.H. Jing, and S.L. Wang, Rock plastic-damage constitutive model based on energy dissipation, Rock Soil Mech., 42(2021), art. No. 1210.
    [28]
    F.Q. Gong, Y.L. Wang, Z.G. Wang, J.F. Pan, and S. Luo, A new criterion of coal burst proneness based on the residual elastic energy index, Int. J. Min. Sci. Technol., 31(2021), No. 4, p. 553. doi: 10.1016/j.ijmst.2021.04.001
    [29]
    F.Q. Gong, Y.L. Wang, and S. Luo, Rockburst proneness criteria for rock materials: Review and new insights, J. Cent. South Univ., 27(2020), No. 10, p. 2793. doi: 10.1007/s11771-020-4511-y
    [30]
    Z.Z. Zhang and F. Gao, Experimental investigation on the energy evolution of dry and water-saturated red sandstones, Int. J. Min. Sci. Technol., 25(2015), No. 3, p. 383. doi: 10.1016/j.ijmst.2015.03.009
    [31]
    D.Z. Song, E.Y. Wang, and J. Liu, Relationship between EMR and dissipated energy of coal rock mass during cyclic loading process, Saf. Sci., 50(2012), No. 4, p. 751. doi: 10.1016/j.ssci.2011.08.039
    [32]
    R. Solecki and R.J. Conant, Advanced Mechanics of Materials, Oxford University Press, London, 2003.
    [33]
    M.H. Wei, D.Z. Song, X.Q. He, Q. Lou, L.M. Qiu, and Z.L. Li, Characteristics of electromagnetic vector field generated from rock fracturing, J. Rock Mech. Geotech. Eng., 15(2023), No. 2, p. 457. doi: 10.1016/j.jrmge.2022.07.002
    [34]
    S. Yin, D.Z. Song, X.Q. He, et al., Time-frequency evolution law and generation mechanism of electromagnetic radiation in coal friction process, Eng. Geol., 294(2021), art. No. 106377. doi: 10.1016/j.enggeo.2021.106377
    [35]
    H.L. Wang, D.Z. Song, Z.L. Li, X.Q. He, S.R. Lan, and H.F. Guo, Acoustic emission characteristics of coal failure using automatic speech recognition methodology analysis, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104472. doi: 10.1016/j.ijrmms.2020.104472
    [36]
    D.Z. Song, X.Q. He, E.Y. Wang, Z.L. Li, and J. Liu, Rockburst Evolutionary Process and Energy Dissipation Characteristics. Singapore: Springer Singapore, 2020.
    [37]
    G. Lacidogna, F. Accornero, and A. Carpinteri, Influence of snap-back instabilities on Acoustic Emission damage monitoring, Eng. Fract. Mech., 210(2019), p. 3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(517) PDF Downloads(38) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return