Yang Liu, Yufeng Liu, Sha Zhang, Lin Zhang, Peng Zhang, Shaorong Zhang, Na Liu, Zhou Li, and Xuanhui Qu, Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2037-2047. https://doi.org/10.1007/s12613-024-2823-x
Cite this article as:
Yang Liu, Yufeng Liu, Sha Zhang, Lin Zhang, Peng Zhang, Shaorong Zhang, Na Liu, Zhou Li, and Xuanhui Qu, Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2037-2047. https://doi.org/10.1007/s12613-024-2823-x
Research Article

Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees

+ Author Affiliations
  • Corresponding authors:

    Lin Zhang    E-mail: zlin@ustb.edu.cn

    Peng Zhang    E-mail: zpeng@ustb.edu.cn

    Xuanhui Qu    E-mail: quxh@ustb.edu.cn

  • Received: 25 September 2023Revised: 27 December 2023Accepted: 2 January 2024Available online: 3 January 2024
  • The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys. In this study, FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film. Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders: amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide. The alloying elements within the oxide layer showed a laminated distribution, with Ni, Co, Cr, and Al/Ti, which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix. On the other hand, Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase. Comparative analysis of the oxide film with oxygen contents of 140, 280, and 340 ppm showed similar element distributions, while the thickness of the oxide film varies approximately at 9, 14, and 30 nm, respectively. These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders.
  • loading
  • Supplementary Information-s12613-024-2823-x.docx
  • [1]
    Y.T. Wu, C. Li, Y.F. Li, J. Wu, X.C. Xia, and Y.C. Liu, Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 553. doi: 10.1007/s12613-020-2177-y
    [2]
    Q.Z. Yang, X.G. Yang, W.Q. Huang, Y. Shi, and D.Q. Shi, Small fatigue crack propagation rate and behaviours in a powder metallurgy superalloy: Role of stress ratio and local microstructure, Int. J. Fatigue, 160(2022), art. No. 106861. doi: 10.1016/j.ijfatigue.2022.106861
    [3]
    G.E. Maurer, W. Castledine, F.A. Schweizer, and S. Mancuso, Development of HIP consolidated P/M superalloys for conventional forging to gas turbine engine components, [in] Superalloys 1996 (Eighth International Symposium ), Pennsylvania, 1996, p. 645.
    [4]
    S.L. Yang, S.F. Yang, W. Liu, J.S. Li, J.G. Gao, and Y. Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 939. doi: 10.1007/s12613-022-2549-6
    [5]
    Z.H. Yao, J. Hou, Y. Chen, W.Y. Xu, H. Jiang, and J.X. Dong, Effect of micron-sized particles on the crack growth behavior of a Ni-based Powder metallurgy superalloy, Mater. Sci. Eng. A, 860(2022), art. No. 144242. doi: 10.1016/j.msea.2022.144242
    [6]
    B. Sun, T.B. Zhang, L. Song, and L. Zhang, Oxidation behavior in static air and its effect on tensile properties of a powder metallurgy EP962NP nickel-based superalloy, J. Alloys Compd., 934(2023), art. No. 167795. doi: 10.1016/j.jallcom.2022.167795
    [7]
    B. Sreenu, R. Sarkar, S.S.S. Kumar, S. Chatterjee, and G.A. Rao, Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications, Mater. Sci. Eng. A, 797(2020), art. No. 140254. doi: 10.1016/j.msea.2020.140254
    [8]
    Z.L. Chi, S. Ren, J.B. Qiao, et al., Failure behaviors and processing maps with failure domains for hot compression of a powder metallurgy Ni-based superalloy, J. Mater. Res. Technol., 20(2022), p. 3860. doi: 10.1016/j.jmrt.2022.08.128
    [9]
    C. Li, J.W. Teng, B.B. Yang, X.J. Ye, J.T. Liu, and Y.P. Li, Correlation between microstructure and mechanical properties of novel Co-Ni-based Powder metallurgy superalloy, Mater. Charact., 181(2021), art. No. 111480. doi: 10.1016/j.matchar.2021.111480
    [10]
    J. Hou, J.X. Dong, Z.H. Yao, H. Jiang, and M.C. Zhang, Influences of PPB, PPB affect zone, grain boundary and phase boundary on crack propagation path for a P/M superalloy FGH4096, Mater. Sci. Eng. A, 724(2018), p. 17. doi: 10.1016/j.msea.2018.03.066
    [11]
    J.E. MacDonald, R.H.U. Khan, M. Aristizabal, K.E.A. Essa, M.J. Lunt, and M.M. Attallah, Influence of powder characteristics on the microstructure and mechanical properties of HIPped CM247LC Ni superalloy, Mater. Des., 174(2019), art. No. 107796. doi: 10.1016/j.matdes.2019.107796
    [12]
    D.L. Shu, S.G. Tian, N. Tian, J. Xie, and Y. Su, Thermodynamic analysis of carbide precipitation and effect of its configuration on creep properties of FGH95 powder nickel-based superalloy, Mater. Sci. Eng. A, 700(2017), p. 152. doi: 10.1016/j.msea.2017.05.108
    [13]
    W.B. Ma, G.Q. Liu, B.F. Hu, Y.W. Zhang, and J.T. Liu, Effect of Hf on carbides of FGH4096 superalloy produced by hot isostatic pressing, Mater. Sci. Eng. A, 587(2013), p. 313. doi: 10.1016/j.msea.2013.05.015
    [14]
    S. Antonov, W. Chen, J.J. Huo, et al., MC carbide characterization in high refractory content powder-processed Ni-based superalloys, Metall. Mater. Trans. A, 49(2018), No. 6, p. 2340. doi: 10.1007/s11661-018-4587-2
    [15]
    Y. Liu, Y.F. Liu, S. Zhang, et al., The genetic evolution behavior of carbides in powder metallurgy FGH96 Ni-based superalloys, J. Mater. Sci., 58(2023), No. 47, p. 17950. doi: 10.1007/s10853-023-09161-4
    [16]
    Q. Zhang, L. Zheng, H. Yuan, Z. Li, G.Q. Zhang, and J.X. Xie, Effects of composition and particle size on the surface state and degassing behavior of nickel-based superalloy powders, Appl. Surf. Sci., 556(2021), art. No. 149793. doi: 10.1016/j.apsusc.2021.149793
    [17]
    W.Y. Xu, Y.F. Liu, H. Yuan, Z. Li, and G.Q. Zhang, Surface characterization of nickel-base superalloy powder, [in] Y. Han, ed., Physics and Engineering of Metallic Materials, Springer, Singapore, 2019, p. 561.
    [18]
    L.M. Tan, Y.P. Li, C.Z. Liu, et al., The evolution history of superalloy powders during hot consolidation and plastic deformation, Mater. Charact., 140(2018), p. 30. doi: 10.1016/j.matchar.2018.03.039
    [19]
    H.S. Kitaguchi, H.Y. Li, H.E. Evans, et al., Oxidation ahead of a crack tip in an advanced Ni-based superalloy, Acta Mater., 61(2013), No. 6, p. 1968. doi: 10.1016/j.actamat.2012.12.017
    [20]
    R. Jiang, F. Pierron, S. Octaviani, and P.A.S. Reed, Characterisation of strain localisation processes during fatigue crack initiation and early crack propagation by SEM-DIC in an advanced disc alloy, Mater. Sci. Eng. A, 699(2017), p. 128. doi: 10.1016/j.msea.2017.05.091
    [21]
    Q. Zhang, L. Zheng, H. Yuan, Z. Li, G.Q. Zhang, and J.X. Xie, Effect of humid atmosphere on the microstructure and mechanical properties of a PM Ni-based superalloy: From Powders to bulk alloys, Mater. Charact., 202(2023), art. No. 113019. doi: 10.1016/j.matchar.2023.113019
    [22]
    W.Y. Xu, Z. Li, Y.F. Liu, L.C. Zhang, and G.Q. Zhang, Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders, Powder Metall. Technol., 38(2020), No. 3, p. 192. doi: 10.19591/j.cnki.cn11-1974/tf.2020.03.004
    [23]
    B. Lynch, S. Neupane, F. Wiame, A. Seyeux, V. Maurice, and P. Marcus, An XPS and ToF-SIMS study of the passive film formed on a model FeCrNiMo stainless steel surface in aqueous media after thermal pre-oxidation at ultra-low oxygen pressure, Appl. Surf. Sci., 554(2021), art. No. 149435. doi: 10.1016/j.apsusc.2021.149435
    [24]
    E. Hryha, C. Gierl, L. Nyborg, H. Danninger, and E. Dudrova, Surface composition of the steel powders pre-alloyed with manganese, Appl. Surf. Sci., 256(2010), No. 12, p. 3946. doi: 10.1016/j.apsusc.2010.01.055
    [25]
    E. Hryha, R. Shvab, M. Bram, M. Bitzer, and L. Nyborg, Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition, Appl. Surf. Sci., 388(2016), p. 294. doi: 10.1016/j.apsusc.2016.01.046
    [26]
    D. Riabov, E. Hryha, M. Rashidi, S. Bengtsson, and L. Nyborg, Effect of atomization on surface oxide composition in 316L stainless steel powders for additive manufacturing, Surf. Interface Anal., 52(2020), No. 11, p. 694. doi: 10.1002/sia.6846
    [27]
    B. Fleischmann, J.P. Chateau-Cornu, L. Dembinski, et al., Influence of particle size on surface oxide of 316L stainless steel powders for hot isostatic pressing, Materialia, 22(2022), art. No. 101405. doi: 10.1016/j.mtla.2022.101405
    [28]
    Y.D. Zhai, Y.H. Chen, Y.S. Zhao, et al., Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: The interface junction initiated outwards oxidation, Acta Mater., 215(2021), art. No. 116991. doi: 10.1016/j.actamat.2021.116991
    [29]
    J.T. Shu, Z.Q. Dong, C. Zheng, et al., High-throughput experiment-assisted study of the alloying effects on oxidation of Nb-based alloys, Corros. Sci., 204(2022), art. No. 110383. doi: 10.1016/j.corsci.2022.110383
    [30]
    N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006, p. 16; p. 101.
    [31]
    B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, D.Z. Li, and Y.Y. Li, Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints, Mater. Des., 157(2018), p. 437. doi: 10.1016/j.matdes.2018.08.003
    [32]
    W.W. Ding, W. Zhan, C. Gang, et al., Oxidation behavior of low-cost CP-Ti powders for additive manufacturing via fluidization, Corros. Sci., 178(2021), art. No. 109080. doi: 10.1016/j.corsci.2020.109080
    [33]
    J.H. Xiao, Y. Xiong, L. Wang, et al., Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100 °C, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1957. doi: 10.1007/s12613-020-2204-z
    [34]
    Z.Y. Zhao, X.H. Yu, C. Wang, S.Y. Yao, Q. Qi, and L.J. Wang, Oxidation mechanism of in situ TiC/Ni composites at 1073K, Corros. Sci., 194(2022), art. No. 109958. doi: 10.1016/j.corsci.2021.109958
    [35]
    K.F. Cai, C.W. Nan, R.Z. Yuan, and X.M. Min, The flexural strength at high temperature and oxidation behaviour of (Nb,Ti)C–Ni composite, Ceram. Int., 22(1996), No. 2, p. 167. doi: 10.1016/0272-8842(95)00075-5
    [36]
    Y. Liu, S. Zhang, L. Zhang, P. Zhang, S.R. Zhang, and X.H. Qu, A new perspective about the surface structure of FGH96 superalloys powders, Vacuum, 220(2024), art. No. 112838. doi: 10.1016/j.vacuum.2023.112838
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(577) PDF Downloads(27) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return