Dengfeng Zhao, Shiyu Zhang, and Yingliang Zhao, Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill: Structure modification, binder properties and environmental assessment, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2136-2147. https://doi.org/10.1007/s12613-024-2825-8
Cite this article as:
Dengfeng Zhao, Shiyu Zhang, and Yingliang Zhao, Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill: Structure modification, binder properties and environmental assessment, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2136-2147. https://doi.org/10.1007/s12613-024-2825-8
Research Article

Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill: Structure modification, binder properties and environmental assessment

+ Author Affiliations
  • Corresponding author:

    Shiyu Zhang    E-mail: zhangshiyu@tyut.edu.cn

  • Received: 10 October 2023Revised: 28 November 2023Accepted: 2 January 2024Available online: 3 January 2024
  • The substantial arsenic (As) content present in arsenic-containing bio-leaching residue (ABR) presents noteworthy environmental challenges attributable to its inherent instability and susceptibility to leaching. Given its elevated calcium sulfate content, ABR exhibits considerable promise for industrial applications. This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement (SSC), offering an innovative binder for cemented paste backfill (CPB). Thermal treatment at varying temperatures of 150, 350, 600, and 800°C was employed to modify ABR’s performance. The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR. Subsequently, the hydration characteristics of SSC utilizing ABR, with or without thermal treatment, were studied, encompassing reaction kinetics, setting time, strength development, and microstructure. The findings revealed that thermal treatment changed the calcium sulfate structure in ABR, consequently impacting the resultant sample performance. Notably, calcination at 600°C demonstrated optimal modification effects on both early and long-term strength attributes. This enhanced performance can be attributed to the augmented formation of reaction products and a densified microstructure. Furthermore, the thermal treatment elicited modifications in the chemical As fractions within ABR, with limited impact on the As immobilization capacity of the prepared binders.
  • loading
  • Supplementary Information-s12613-024-2825-8.docx
  • [1]
    D.R. Zhang, J.L. Xia, Z.Y. Nie, et al., Mechanism by which ferric iron promotes the bioleaching of arsenopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans, Process Biochem, 81(2019), . 11. doi: 10.1016/j.procbio.2019.03.004
    [2]
    H. Ciftci and A. Akcil, Biohydrometallurgy in Turkish gold mining: First shake flask and bioreactor studies, Miner. Eng., 46-47(2013), p. 25. doi: 10.1016/j.mineng.2013.03.020
    [3]
    M.E.L. Arrascue and J. van Niekerk, Biooxidation of arsenopyrite concentrate using BIOX® process: Industrial experience in Tamboraque, Peru, Hydrometallurgy, 83(2006), No. 1-4, p. 90. doi: 10.1016/j.hydromet.2006.03.050
    [4]
    Y.K. Li, X. Zhu, X.J. Qi, et al., Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel, Chem. Eng. J., 394(2020), art. No. 124833. doi: 10.1016/j.cej.2020.124833
    [5]
    X. Sun, J. Li, X. Sun, et al., Efficient stabilization of arsenic in the arsenic-bearing lime-ferrate sludge by zero valent iron-enhanced hydrothermal treatment, Chem. Eng. J., 421(2021), art. No. 129683. doi: 10.1016/j.cej.2021.129683
    [6]
    B. Peng, J. Lei, X.B. Min, L.Y. Chai, Y.J. Liang, and Y. You, Physicochemical properties of arsenic-bearing lime–ferrate sludge and its leaching behaviors, Trans. Nonferrous Met. Soc. China, 27(2017), No. 5, p. 1188. doi: 10.1016/S1003-6326(17)60140-7
    [7]
    D.Z. Yang, A. Sasaki, and M. Endo, Reclamation of a waste arsenic-bearing gypsum as a soil conditioner via acid treatment and subsequent Fe(II)As stabilization, J. Cleaner Prod., 217(2019), p. 22. doi: 10.1016/j.jclepro.2019.01.217
    [8]
    L.U.D. Tambara, M. Cheriaf, J.C. Rocha, A. Palomo, and A. Fernández-Jiménez, Effect of alkalis content on calcium sulfoaluminate (CSA) cement hydration, Cem. Concr. Res., 128(2020), art. No. 105953. doi: 10.1016/j.cemconres.2019.105953
    [9]
    V.P. Mehrotra, A.S.R. Sai, and P.C. Kapur, Plaster of Paris activated supersulfated slag cement, Cem. Concr. Res., 12(1982), No. 4, p. 463. doi: 10.1016/0008-8846(82)90061-8
    [10]
    B. Gracioli, C. Angulski da Luz, C.S. Beutler, et al., Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements, Constr. Build. Mater., 262(2020), art. No. 119961. doi: 10.1016/j.conbuildmat.2020.119961
    [11]
    W.T. Xu, G.C. Song, K.X. Hu, Q. Song, and Q. Yao, The redistribution of arsenic during the interaction between high-temperature flue gas and ash, Fuel Process. Technol., 212(2021), art. No. 106641. doi: 10.1016/j.fuproc.2020.106641
    [12]
    D.Z. Yang, A. Sasaki, and M. Endo, Reclamation of an arsenic-bearing gypsum via acid washing and CaO–As stabilization involving svabite formation in thermal treatment, J. Environ. Manage., 231(2019), p. 811. doi: 10.1016/j.jenvman.2018.10.119
    [13]
    A. Saedi, A. Jamshidi-Zanjani, and A.K. Darban, A review of additives used in the cemented paste tailings: Environmental aspects and application, J. Environ. Manage., 289(2021), art. No. 112501. doi: 10.1016/j.jenvman.2021.112501
    [14]
    H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits, J. Cleaner Prod., 188(2018), p. 601. doi: 10.1016/j.jclepro.2018.04.041
    [15]
    C.P. Li, X. Li, and Z.E. Ruan, Rheological properties of a multiscale granular system during mixing of cemented paste backfill: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p.1444. doi: 10.1007/s12613-023-2601-1
    [16]
    B. Koohestani, P. Mokhtari, E. Yilmaz, F. Mahdipour, and A.K. Darban, Geopolymerization mechanism of binder-free mine tailings by sodium silicate, Constr. Build. Mater., 268(2021), art. No. 121217. doi: 10.1016/j.conbuildmat.2020.121217
    [17]
    C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
    [18]
    L.H. Yang, J.C. Li, H.B. Liu, et al., Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1430. doi: 10.1007/s12613-023-2609-6
    [19]
    X.Y. Zhang, T.R. Cao, L. Liu, B.Y. Bu, YP. Ke, and Q.Q. Du, Experimental study on thermal and mechanical properties of tailings-based cemented paste backfill with CaCl2·6H2O/expanded vermiculite shape stabilized phase change materials, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 250. doi: 10.1007/s12613-022-2503-7
    [20]
    Q.S. Chen, Y.B. Tao, Y. Feng, Q.L. Zhang, and Y.K. Liu, Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill, J. Environ. Manage., 290(2021), art. No. 112608. doi: 10.1016/j.jenvman.2021.112608
    [21]
    S.Y. Ouyang, Y.L. Huang, N. Zhou, et al., Experiment on acoustic emission response and damage evolution characteristics of polymer-modified cemented paste backfill under uniaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1502. doi: 10.1007/s12613-023-2617-6
    [22]
    D.N. Zhang, Z.D. Yuan, S.F. Wang, Y.F. Jia, and G.P. Demopoulos, Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry, J. Hazard. Mater., 300(2015), p. 272. doi: 10.1016/j.jhazmat.2015.07.015
    [23]
    S.R. Yang, Fundamental and Industrializaiton Investigation on Biooxidation of Arsenic-bearing Refractory Gold Ore [Dissertation], Central South University, Changsha, 2004.
    [24]
    W.X. Cao, W. Yi, J.H. Peng, J. Li, and S.H. Yin, Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature, J. Build. Eng., 45(2022), art. No. 103511. doi: 10.1016/j.jobe.2021.103511
    [25]
    X.B. Li and Q. Zhang, Dehydration behaviour and impurity change of phosphogypsum during calcination, Constr. Build. Mater., 311(2021), art. No. 125328. doi: 10.1016/j.conbuildmat.2021.125328
    [26]
    S.C.B. Myneni, S.J. Traina, G.A. Waychunas, and T.J. Logan, Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite, Geochim. Cosmochim. Acta, 62(1998), No. 21-22, p. 3499. doi: 10.1016/S0016-7037(98)00221-X
    [27]
    R.X. He, S.Y. Zhang, X.L. Zhang, Z.H. Zhang, Y.L. Zhao, and H.X. Ding, Copper slag: The leaching behavior of heavy metals and its applicability as a supplementary cementitious material, J. Environ. Chem. Eng., 9(2021), No. 2, art. No. 105132. doi: 10.1016/j.jece.2021.105132
    [28]
    M. Mahedi, B. Cetin, and A.Y. Dayioglu, Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils, Waste Manage., 95(2019), p. 334. doi: 10.1016/j.wasman.2019.06.018
    [29]
    R.J. Hou, L.W. Wang, D. O’Connor, D.C.W. Tsang, J. Rinklebe, and D.Y. Hou, Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land, Environ. Int., 144(2020), art. No. 106040. doi: 10.1016/j.envint.2020.106040
    [30]
    A.A. Qureshi, T.G. Kazi, J.A. Baig, M.B. Arain, and H.I. Afridi, Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass, Chemosphere, 255(2020), art. No. 126960. doi: 10.1016/j.chemosphere.2020.126960
    [31]
    J.W. Bullard, H.M. Jennings, R.A. Livingston, et al., Mechanisms of cement hydration, Cem. Concr. Res., 41(2011), No. 12, p. 1208. doi: 10.1016/j.cemconres.2010.09.011
    [32]
    D. Marchon, P. Juilland, E. Gallucci, L. Frunz, and R.J. Flatt, Molecular and submolecular scale effects of comb-copolymers on tri-calcium silicate reactivity: Toward molecular design, J. Am. Ceram. Soc., 100(2017), No. 3, p. 817. doi: 10.1111/jace.14695
    [33]
    Y.L. Zhao, J.P. Qiu, J. Xing, and X.G. Sun, Chemical activation of binary slag cement with low carbon footprint, J. Cleaner Prod., 267(2020), art. No. 121455. doi: 10.1016/j.jclepro.2020.121455
    [34]
    S. Ioannou, L. Reig, K. Paine, and K. Quillin, Properties of a ternary calcium sulfoaluminate–calcium sulfate–fly ash cement, Cem. Concr. Res., 56(2014), p. 75. doi: 10.1016/j.cemconres.2013.09.015
    [35]
    M.C.G. Juenger, F. Winnefeld, J.L. Provis, and J.H. Ideker, Advances in alternative cementitious binders, Cem. Concr. Res., 41(2011), No. 12, p. 1232. doi: 10.1016/j.cemconres.2010.11.012
    [36]
    R.X. Magallanes-Rivera and J.I. Escalante-García, Hemihydrate or waste anhydrite in composite binders with blast-furnace slag: Hydration products, microstructures and dimensional stability, Constr. Build. Mater., 71(2014), p. 317. doi: 10.1016/j.conbuildmat.2014.08.054
    [37]
    K. Cabrera-Luna, E.E. Maldonado-Bandala, D. Nieves-Mendoza, P. Castro-Borges, and J.I.E. García, Novel low emissions supersulfated cements of pumice in concrete; mechanical and electrochemical characterization, J. Cleaner Prod., 272(2020), art. No. 122520. doi: 10.1016/j.jclepro.2020.122520
    [38]
    S. Adu-Amankwah, M. Zajac, C. Stabler, B. Lothenbach, and L. Black, Influence of limestone on the hydration of ternary slag cements, Cem. Concr. Res., 100(2017), p. 96. doi: 10.1016/j.cemconres.2017.05.013
    [39]
    K. Gijbels, H. Nguyen, P. Kinnunen, et al., Feasibility of incorporating phosphogypsum in ettringite-based binder from ladle slag, J. Cleaner Prod., 237(2019), art. No. 117793. doi: 10.1016/j.jclepro.2019.117793
    [40]
    H. Nguyen, P. Kinnunen, K. Gijbels, et al., Ettringite-based binder from ladle slag and gypsum – The effect of citric acid on fresh and hardened state properties, Cem. Concr. Res., 123(2019), art. No. 105800. doi: 10.1016/j.cemconres.2019.105800
    [41]
    K. Scrivener, R. Snellings, and B. Lothenbach, eds., A Practical Guide to Microstructural Analysis of Cementitious Materials, CRC Press, Florida, 2018.
    [42]
    B. Guo, B. Liu, J. Yang, and S.G. Zhang, The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review, J. Environ. Manage., 193(2017), p. 410. doi: 10.1016/j.jenvman.2017.02.026
    [43]
    P. Randall and S. Chattopadhyay, Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes, J. Hazard. Mater., 114(2004), No. 1-3, p. 211. doi: 10.1016/j.jhazmat.2004.08.010
    [44]
    M. Vespa, R. Dähn, and E. Wieland, Competition behaviour of metal uptake in cementitious systems: An XRD and EXAFS investigation of Nd- and Zn-loaded 11 Å tobermorite, Phys. Chem. Earth Parts A/B/C, 70-71(2014), p. 32. doi: 10.1016/j.pce.2014.01.001
    [45]
    E.C. Gillispie, S.T. Mergelsberg, T. Varga, et al., Competitive $ {\mathrm{T}\mathrm{c}\mathrm{O}}_{4}^{-} $, $ {\mathrm{I}\mathrm{O}}_{3}^{-} $, and $ {\mathrm{C}\mathrm{r}\mathrm{O}}_{4}^{2-} $ incorporation into ettringite, Environ. Sci. Technol., 55(2021), No. 2, p. 1057. doi: 10.1021/acs.est.0c06707
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(2780) PDF Downloads(58) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return