Cite this article as: |
Tingting Lu, Kang Li, Hongliang Zhao, Wei Wang, Zhenhao Zhou, Xiaoyi Cai, and Fengqin Liu, Rapid prediction of flow and concentration fields in solid–liquid suspensions of slurry electrolysis tanks, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2006-2016. https://doi.org/10.1007/s12613-024-2826-7 |
Hongliang Zhao E-mail: zhaohl@ustb.edu.cn
[1] |
C.Y. Wang, D.F. Qiu, F. Yin, H.Y. Wang, and Y.Q. Chen, Slurry electrolysis of ocean polymetallic nodule, Trans. Nonferrous Met. Soc. China, 20(2010), No.Supplement 1, p. s60.
|
[2] |
Y.L. Zhang, C.Y. Wang, B.Z. Ma, X.W. Jie, and P. Xing, Extracting antimony from high arsenic and gold-containing stibnite ore using slurry electrolysis, Hydrometallurgy, 186(2019), p. 284. doi: 10.1016/j.hydromet.2019.04.026
|
[3] |
Y.J. Zhang, X.W. Yang, L.H. Deng, and G. Yao, Leaching mechanism of sulfide ores in slurry electrolysis, Trans. Nonferrous Met. Soc. China, 10(2000), No. 1, . 105.
|
[4] |
Y.L. Zhang, D.F. Qiu, C.Y. Wang, et al., Anodic process of stibnite in slurry electrolysis: The direct collision oxidation, Chin. J. Chem. Eng., 41(2022), p. 466. doi: 10.1016/j.cjche.2021.12.011
|
[5] |
Y.L. Zhang, Z.C. Yao, X.W. Jie, B.Z. Ma, C.Y. Wang, and Y.Q. Chen, Anodic process of stibnite in slurry electrolysis: Indirect electro-oxidation, JOM, 75(2023), No. 5, p. 1551. doi: 10.1007/s11837-022-05563-y
|
[6] |
T.T. Lu, H. Shen, G.Y. Na, et al., CFD simulation of suspension characteristics in a stirred tank for slurry electrolysis, Metall. Mater. Trans. B, 53(2022), No. 3, p. 1747. doi: 10.1007/s11663-022-02484-8
|
[7] |
T.T. Lu, K. Li, F.Q. Liu, et al., Numerical simulation of solid-liquid suspension in a slurry electrolysis stirred tank, Chem. Eng. Res. Des., 189(2023), p. 371. doi: 10.1016/j.cherd.2022.11.046
|
[8] |
F.Q. Liu, T. Lu, K. Li, C.M. Xie, and H.L. Zhao, Computational fluid dynamics study on the effect of stirring parameters on solid–liquid suspension in the slurry electrolysis square tank, Adv. Powder Technol., 34(2023), No. 5, art. No. 104016. doi: 10.1016/j.apt.2023.104016
|
[9] |
M.Q. Gu, A.J. Xu, F. Yuan, X.M. He, and Z.F. Cui, An improved CBR model using time-series data for predicting the end-point of a converter, ISIJ Int., 61(2021), No. 10, p. 2564. doi: 10.2355/isijinternational.ISIJINT-2020-687
|
[10] |
F. He and L.Y. Zhang, Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network, J. Process. Control, 66(2018), p. 51. doi: 10.1016/j.jprocont.2018.03.005
|
[11] |
K. Feng, A.J. Xu, D.F. He, and H.B. Wang, An improved CBR model based on mechanistic model similarity for predicting end phosphorus content in dephosphorization converter, Steel Res. Int., 89(2018), No. 6, art. No. 1800063. doi: 10.1002/srin.201800063
|
[12] |
R.H. Zhang and J. Yang, State of the art in applications of machine learning in steelmaking process modeling, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2055. doi: 10.1007/s12613-023-2646-1
|
[13] |
G.F. Pan, F.Y. Wang, C.L. Shang, et al., Advances in machine learning- and artificial intelligence-assisted material design of steels, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1003. doi: 10.1007/s12613-022-2595-0
|
[14] |
Z.J. Qin, Z. Wang, Y.Q. Wang, et al., Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning, Mater. Res. Lett., 9(2021), No. 1, p. 32. doi: 10.1080/21663831.2020.1815093
|
[15] |
Z. Xia, F. Zhao, X.H. Liu, and J.X. Xie, Prediction of interface structure and properties of Cu–Al composites assisted by machine learning, Chin. J. Nonferrous Met., 33(2023), No. 1, p. 88.
|
[16] |
C. Gebhardt, T. Trimborn, F. Weber, A. Bezold, C. Broeckmann, and M. Herty, Simplified ResNet approach for data driven prediction of microstructure-fatigue relationship, Mech. Mater., 151(2020), art. No. 103625. doi: 10.1016/j.mechmat.2020.103625
|
[17] |
A. Marcato, G. Boccardo, and D. Marchisio, From computational fluid dynamics to structure interpretation via neural networks: An application to flow and transport in porous media, Ind. Eng. Chem. Res., 61(2022), No. 24, p. 8530. doi: 10.1021/acs.iecr.1c04760
|
[18] |
T. Yasuda, S. Ookawara, S. Yoshikawa, and H. Matsumoto, Materials processing model-driven discovery framework for porous materials using machine learning and genetic algorithm: A focus on optimization of permeability and filtration efficiency, Chem. Eng. J., 453(2023), art. No. 139540. doi: 10.1016/j.cej.2022.139540
|
[19] |
F. Modaresi, S. Araghinejad, and K. Ebrahimi, A comparative assessment of artificial neural network, generalized regression neural network, least-square support vector regression, and K-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions, Water Resour. Manage., 32(2018), No. 1, p. 243. doi: 10.1007/s11269-017-1807-2
|
[20] |
N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, Am. Stat., 46(1992), No. 3, art. No. 175. doi: 10.1080/00031305.1992.10475879
|
[21] |
D. Panchigar, K. Kar, S. Shukla, R.M. Mathew, U. Chadha, and S.K. Selvaraj, Machine learning-based CFD simulations: A review, models, open threats, and future tactics, Neural Comput. Appl., 34(2022), No. 24, p. 21677. doi: 10.1007/s00521-022-07838-6
|
[22] |
Y.L. Gao and F. Gao, Edited AdaBoost by weighted kNN, Neurocomputing, 73(2010), No. 16-18, p. 3079. doi: 10.1016/j.neucom.2010.06.024
|
[23] |
S.K.A. Kamarol, M.H. Jaward, H. Kälviäinen, J. Parkkinen, and R. Parthiban, Joint facial expression recognition and intensity estimation based on weighted votes of image sequences, Pattern Recognit. Lett., 92(2017), p. 25. doi: 10.1016/j.patrec.2017.04.003
|
[24] |
J. Mohammadpour, S. Husain, F. Salehi, and A. Lee, Machine learning regression-CFD models for the nanofluid heat transfer of a microchannel heat sink with double synthetic jets, Int. Commun. Heat Mass Transf., 130(2022), art. No. 105808. doi: 10.1016/j.icheatmasstransfer.2021.105808
|
[25] |
X.L. Wei, B.J. Xue, and Q. Zhao, Optimization design of the stability for the plunger assembly of oil pumps based on multi-target orthogonal test design, J. Hebei Univ. Eng. Nat. Sci. Ed., 27(2010), No. 3, p. 95.
|