Cite this article as: |
Yong Wang, Wei Wang, Joo Hyun Park, and Wangzhong Mu, Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1639-1650. https://doi.org/10.1007/s12613-024-2831-x |
Wei Wang E-mail: wei6@kth.se
Wangzhong Mu E-mail: wmu@kth.se
[1] |
D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
|
[2] |
Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
|
[3] |
Y.Q. Wu, P.K. Liaw, R.X. Li, et al., Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1350. doi: 10.1007/s12613-023-2777-4
|
[4] |
P.J. Shi, W.L. Ren, T.X. Zheng, et al., Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), No. 1, art. No. 489. doi: 10.1038/s41467-019-08460-2
|
[5] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 534(2016), No. 7606, p. 227. doi: 10.1038/nature17981
|
[6] |
Y. Zhang, M. Zhang, D.Y. Li, et al., Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe0.3Co0.5Ni0.2)100− x(Al1/3Si2/3) x system, Metals, 9(2019), No. 3, art. No. 382.
|
[7] |
M. Zhang, J.X. Hou, H.J. Yang, et al., Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1341. doi: 10.1007/s12613-020-2084-2
|
[8] |
W. Wang, Z.Y. Hou, R. Lizárraga, et al., An experimental and theoretical study of duplex fcc+hcp cobalt based entropic alloys, Acta Mater., 176(2019), p. 11. doi: 10.1016/j.actamat.2019.06.041
|
[9] |
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics, 60(2015), p. 1. doi: 10.1016/j.intermet.2015.01.004
|
[10] |
T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTi x alloys, Mater. Sci. Eng. A, 556(2012), p. 170. doi: 10.1016/j.msea.2012.06.075
|
[11] |
H. Ren, R.R. Chen, X.F. Gao, et al., Phase formation and mechanical features in (AlCoCrFeNi)100− xHf x high-entropy alloys: The role of Hf, Mater. Sci. Eng. A, 858(2022), art. No. 144156. doi: 10.1016/j.msea.2022.144156
|
[12] |
T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo x alloys, Mater. Charact., 70(2012), p. 63. doi: 10.1016/j.matchar.2012.05.005
|
[13] |
S. Haas, A.M. Manzoni, F. Krieg, and U. Glatzel, Microstructure and mechanical properties of precipitate strengthened high entropy alloy Al10Co25Cr8Fe15Ni36Ti6 with additions of hafnium and molybdenum, Entropy, 21(2019), No. 2, art. No. 169. doi: 10.3390/e21020169
|
[14] |
A. Gali and E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39(2013), p. 74. doi: 10.1016/j.intermet.2013.03.018
|
[15] |
F. Otto, N.L. Hanold, and E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics, 54(2014), p. 39. doi: 10.1016/j.intermet.2014.05.014
|
[16] |
F. Otto, A. Dlouhý, K.G. Pradeep, et al., Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater., 112(2016), p. 40. doi: 10.1016/j.actamat.2016.04.005
|
[17] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
|
[18] |
K.P. Yu, S.H. Feng, C. Ding, P. Yu, and M.X. Huang, Improving anti-corrosion properties of CoCrFeMnNi high entropy alloy by introducing Si into nonmetallic inclusions, Corros. Sci., 208(2022), art. No. 110616. doi: 10.1016/j.corsci.2022.110616
|
[19] |
Y. Wang, Y.L. Li, W. Wang, et al., Effect of manufacturing conditions and Al addition on inclusion characteristics in Co-based dual-phase high entropy alloy, Metall. Mater. Trans. A, 54(2023), No. 7, p. 2715. doi: 10.1007/s11661-023-07049-1
|
[20] |
G. Qin, R.R. Chen, H.T. Zheng, et al., Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition, J. Mater. Sci. Technol., 35(2019), No. 4, p. 578. doi: 10.1016/j.jmst.2018.10.009
|
[21] |
L.M. Ma, X.X. Tang, L.N. Jia, S.N. Yuan, J.R. Ge, and H. Zhang, Influence of Hf contents on interactions between Nb-silicide based alloys and yttria moulds during directional solidification, Int. J. Refract. Met. Hard Mater., 33(2012), p. 87. doi: 10.1016/j.ijrmhm.2012.02.020
|
[22] |
O. Benafan, G.S. Bigelow, A. Garg, R.D. Noebe, D.J. Gaydosh, and R.B. Rogers, Processing and scalability of NiTiHf high-temperature shape memory alloys, Shape Mem. Superelasticity, 7(2021), No. 1, p. 109. doi: 10.1007/s40830-020-00306-x
|
[23] |
Y.Z. Zhou, A. Volek, and R.F. Singer, Influence of solidification conditions on the castability of nickel-base superalloy IN792, Metall. Mater. Trans. A, 36(2005), No. 3, p. 651. doi: 10.1007/s11661-005-0181-5
|
[24] |
I.V. Belyaev, V.E. Bazhenov, A.V. Kireev, and A.V. Moiseev, Nonmetallic inclusions in a new alloy for single-crystal permanent magnets, Arch. Foundry Eng., 18(2018), No. 2, p. 11.
|
[25] |
W. Wang, Y. Wang, W. Mu, et al., Inclusion engineering in Co-based duplex entropic alloys, Mater. Des., 210(2021), art. No. 110097. doi: 10.1016/j.matdes.2021.110097
|
[26] |
C.L. Qiu and X.H. Wu, High cycle fatigue and fracture behaviour of a hot isostatically pressed nickel-based superalloy, Philos. Mag., 94(2014), No. 3, p. 242. doi: 10.1080/14786435.2013.852287
|
[27] |
H. Ohta and H. Suito, Activities of MnO in CaO–SiO2–Al2O3–MnO (<10 Pct)–FetO(<3 pct) slags saturated with liquid iron, Metall. Mater. Trans. B, 26(1995), No. 2, p. 295. doi: 10.1007/BF02660972
|
[28] |
Y. Haruna, Removal of Inclusions from Cast Superalloy Revert [Dissertation], University of British Columbia, Vancouver, 1994.
|
[29] |
Y.Z. Luo, J.M. Zhang, Z.M. Liu, C. Xiao, and S.Z. Wu, In situ observation and thermodynamic calculation of MnS in 49MnVS3 non-quenched and tempered steel, Acta Metall. Sin. Engl. Lett., 24(2011), No. 4, p. 326.
|
[30] |
T. Matsushita and K. Mukai, Chemical Thermodynamics in Materials Science : From Basics to Practical Applications, Springer, Singapore, 2018.
|
[31] |
S.B. Rumyantseva, B.A. Rumyantsev, V.N. Simonov, G.S. Sprygin, and V.N. Kashirtsev, Optimum deoxidation of a Kh65NVFT chromium–nickel alloy containing refractory metals, Russ. Metall. Met., 2020(2020), No. 12, p. 1349. doi: 10.1134/S0036029520120174
|
[32] |
S. Takaya, T. Furukawa, G. Müller, et al., Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth, J. Nucl. Mater., 428(2012), No. 1-3, p. 125. doi: 10.1016/j.jnucmat.2011.06.046
|
[33] |
R. Filip, M. Zagula-Yavorska, M. Pytel, J. Romanowska, M. Maliniak, and J. Sieniawski, The oxidation resistance of nonmodified and Zr-modified aluminide coatings deposited by the CVD method, Solid State Phenom., 227(2015), p. 361. doi: 10.4028/www.scientific.net/SSP.227.361
|
[34] |
H. Qian, The Effect of Processing Parameters on Structure Evolution during Laser Additive Manufacturing and Post-processing of Niobium-Silicide Based Alloys [Dissertation], University of Leicester, Leicester, 2021.
|
[35] |
M.L. Turpin and J.F. Elliott, Nucleation of oxide inclusions in iron melts, J. Iron. Steel. Inst., 204(1966), p. 217.
|
[36] |
T. Gheno and B. Gleeson, Kinetics of Al2O3-scale growth by oxidation and dissolution in molten silicate, Oxid. Met., 87(2017), No. 3, p. 527.
|
[37] |
J.A. Murdzek and S.M. George, Effect of crystallinity on thermal atomic layer etching of hafnium oxide, zirconium oxide, and hafnium zirconium oxide, J. Vac. Sci. Technol. A: Vac. Surf. Films, 38(2020), No. 2, art. No. 022608. doi: 10.1116/1.5135317
|
[38] |
D.L. You, S.K. Michelic, G. Wieser, and C. Bernhard, Modeling of manganese sulfide formation during the solidification of steel, J. Mater. Sci., 52(2017), No. 3, p. 1797. doi: 10.1007/s10853-016-0470-y
|
[39] |
D.L. You, S.K. Michelic, P. Presoly, J.H. Liu, and C. Bernhard, Modeling inclusion formation during solidification of steel: A review, Metals, 7(2017), No. 11, art. No. 460. doi: 10.3390/met7110460
|
[40] |
N. Aritomi and K. Gunji, Morphology and formation mechanism of dendritic inclusions in iron and iron-nickel alloys deoxidized with silicon and solidified unidirectionally, ISIJ Int., 19(1979), No. 3, p. 152. doi: 10.2355/isijinternational1966.19.152
|
[41] |
E. Steinmetz and H.U. Lindenberg, Morphology of inclusions during deoxidation (of Fe melts) with Al, Arch. Eisenhuttenwes., 47(1976), p. 199.
|
[42] |
L.F. Zhang, S. Taniguchi, and K.K. Cai, Fluid flow and inclusion removal in continuous casting tundish, Metall. Mater. Trans. B, 31(2000), No. 2, p. 253. doi: 10.1007/s11663-000-0044-9
|
[43] |
C.J. Xuan, A.V. Karasev, and P.G. Jönsson, Evaluation of agglomeration mechanisms of non-metallic inclusions and cluster characteristics produced by Ti/Al complex deoxidation in Fe-10mass% Ni alloy, ISIJ Int., 56(2016), No. 7, p. 1204. doi: 10.2355/isijinternational.ISIJINT-2016-030
|
[44] |
W. Mu, N. Dogan, and K.S. Coley, Agglomeration of non-metallic inclusions at the steel/Ar interface: Model application, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2092. doi: 10.1007/s11663-017-0998-5
|
[45] |
O. Buiu, W. Davey, Y. Lu, I.Z. Mitrovic, and S. Hall, Ellipsometric analysis of mixed metal oxides thin films, Thin Solid Films, 517(2008), No. 1, p. 453. doi: 10.1016/j.tsf.2008.08.119
|
[46] |
K.L. Chen, D.Y. Wang, D. Hou, T.P. Qu, J. Tian, and H.H. Wang, Effect of interfacial properties on agglomeration of inclusions in molten steels, ISIJ Int., 59(2019), No. 10, p. 1735. doi: 10.2355/isijinternational.ISIJINT-2019-053
|
[47] |
K. Nakajima, W. Mu, and P.G. Jönsson, Assessment of a simplified correlation between wettability measurement and dispersion/coagulation potency of oxide particles in ferrous alloy melt, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2229. doi: 10.1007/s11663-019-01624-x
|
[48] |
C.Y. Chain, R.A. Quille, and A.F. Pasquevich, Ball milling induced solid-state reactions in the La2O3–HfO2 ceramic system, J. Alloys Compd., 495(2010), No. 2, p. 524. doi: 10.1016/j.jallcom.2009.10.130
|
[49] |
S. Kimura, K. Nakajima, and S. Mizoguchi, Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels, Metall. Mater. Trans. B, 32(2001), No. 1, p. 79. doi: 10.1007/s11663-001-0010-1
|
[50] |
M. Söder, P. Jönsson, and L. Jonsson, Inclusion growth and removal in gas-stirred ladles, Steel Res. Int., 75(2004), No. 2, p. 128. doi: 10.1002/srin.200405938
|