Yong Wang, Wei Wang, Joo Hyun Park, and Wangzhong Mu, Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1639-1650. https://doi.org/10.1007/s12613-024-2831-x
Cite this article as:
Yong Wang, Wei Wang, Joo Hyun Park, and Wangzhong Mu, Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1639-1650. https://doi.org/10.1007/s12613-024-2831-x
Research ArticleOpen Access

Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys

+ Author Affiliations
  • Corresponding authors:

    Wei Wang    E-mail: wei6@kth.se

    Wangzhong Mu    E-mail: wmu@kth.se

  • Received: 27 July 2023Revised: 14 January 2024Accepted: 15 January 2024Available online: 17 January 2024
  • Specific grades of high-entropy alloys (HEAs) can provide opportunities for optimizing properties toward high-temperature applications. In this work, the Co-based HEA with a chemical composition of Co47.5Cr30Fe7.5Mn7.5Ni7.5 (at%) was chosen. The refractory metallic elements hafnium (Hf) and molybdenum (Mo) were added in small amounts (1.5at%) because of their well-known positive effects on high-temperature properties. Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method. The results revealed that the addition of Hf can reduce Al2O3 inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase. Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt. The calculated coagulation coefficient and collision rate of Al2O3 inclusions were higher than those of HfO2 inclusions, but the inclusion amount played a larger role in the agglomeration behavior of HfO2 and Al2O3 inclusions. The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.
  • loading
  • [1]
    D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
    [2]
    Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
    [3]
    Y.Q. Wu, P.K. Liaw, R.X. Li, et al., Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1350. doi: 10.1007/s12613-023-2777-4
    [4]
    P.J. Shi, W.L. Ren, T.X. Zheng, et al., Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), No. 1, art. No. 489. doi: 10.1038/s41467-019-08460-2
    [5]
    Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 534(2016), No. 7606, p. 227. doi: 10.1038/nature17981
    [6]
    Y. Zhang, M. Zhang, D.Y. Li, et al., Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe0.3Co0.5Ni0.2)100− x(Al1/3Si2/3) x system, Metals, 9(2019), No. 3, art. No. 382.
    [7]
    M. Zhang, J.X. Hou, H.J. Yang, et al., Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1341. doi: 10.1007/s12613-020-2084-2
    [8]
    W. Wang, Z.Y. Hou, R. Lizárraga, et al., An experimental and theoretical study of duplex fcc+hcp cobalt based entropic alloys, Acta Mater., 176(2019), p. 11. doi: 10.1016/j.actamat.2019.06.041
    [9]
    W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics, 60(2015), p. 1. doi: 10.1016/j.intermet.2015.01.004
    [10]
    T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTi x alloys, Mater. Sci. Eng. A, 556(2012), p. 170. doi: 10.1016/j.msea.2012.06.075
    [11]
    H. Ren, R.R. Chen, X.F. Gao, et al., Phase formation and mechanical features in (AlCoCrFeNi)100− xHf x high-entropy alloys: The role of Hf, Mater. Sci. Eng. A, 858(2022), art. No. 144156. doi: 10.1016/j.msea.2022.144156
    [12]
    T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo x alloys, Mater. Charact., 70(2012), p. 63. doi: 10.1016/j.matchar.2012.05.005
    [13]
    S. Haas, A.M. Manzoni, F. Krieg, and U. Glatzel, Microstructure and mechanical properties of precipitate strengthened high entropy alloy Al10Co25Cr8Fe15Ni36Ti6 with additions of hafnium and molybdenum, Entropy, 21(2019), No. 2, art. No. 169. doi: 10.3390/e21020169
    [14]
    A. Gali and E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39(2013), p. 74. doi: 10.1016/j.intermet.2013.03.018
    [15]
    F. Otto, N.L. Hanold, and E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics, 54(2014), p. 39. doi: 10.1016/j.intermet.2014.05.014
    [16]
    F. Otto, A. Dlouhý, K.G. Pradeep, et al., Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater., 112(2016), p. 40. doi: 10.1016/j.actamat.2016.04.005
    [17]
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
    [18]
    K.P. Yu, S.H. Feng, C. Ding, P. Yu, and M.X. Huang, Improving anti-corrosion properties of CoCrFeMnNi high entropy alloy by introducing Si into nonmetallic inclusions, Corros. Sci., 208(2022), art. No. 110616. doi: 10.1016/j.corsci.2022.110616
    [19]
    Y. Wang, Y.L. Li, W. Wang, et al., Effect of manufacturing conditions and Al addition on inclusion characteristics in Co-based dual-phase high entropy alloy, Metall. Mater. Trans. A, 54(2023), No. 7, p. 2715. doi: 10.1007/s11661-023-07049-1
    [20]
    G. Qin, R.R. Chen, H.T. Zheng, et al., Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition, J. Mater. Sci. Technol., 35(2019), No. 4, p. 578. doi: 10.1016/j.jmst.2018.10.009
    [21]
    L.M. Ma, X.X. Tang, L.N. Jia, S.N. Yuan, J.R. Ge, and H. Zhang, Influence of Hf contents on interactions between Nb-silicide based alloys and yttria moulds during directional solidification, Int. J. Refract. Met. Hard Mater., 33(2012), p. 87. doi: 10.1016/j.ijrmhm.2012.02.020
    [22]
    O. Benafan, G.S. Bigelow, A. Garg, R.D. Noebe, D.J. Gaydosh, and R.B. Rogers, Processing and scalability of NiTiHf high-temperature shape memory alloys, Shape Mem. Superelasticity, 7(2021), No. 1, p. 109. doi: 10.1007/s40830-020-00306-x
    [23]
    Y.Z. Zhou, A. Volek, and R.F. Singer, Influence of solidification conditions on the castability of nickel-base superalloy IN792, Metall. Mater. Trans. A, 36(2005), No. 3, p. 651. doi: 10.1007/s11661-005-0181-5
    [24]
    I.V. Belyaev, V.E. Bazhenov, A.V. Kireev, and A.V. Moiseev, Nonmetallic inclusions in a new alloy for single-crystal permanent magnets, Arch. Foundry Eng., 18(2018), No. 2, p. 11.
    [25]
    W. Wang, Y. Wang, W. Mu, et al., Inclusion engineering in Co-based duplex entropic alloys, Mater. Des., 210(2021), art. No. 110097. doi: 10.1016/j.matdes.2021.110097
    [26]
    C.L. Qiu and X.H. Wu, High cycle fatigue and fracture behaviour of a hot isostatically pressed nickel-based superalloy, Philos. Mag., 94(2014), No. 3, p. 242. doi: 10.1080/14786435.2013.852287
    [27]
    H. Ohta and H. Suito, Activities of MnO in CaO–SiO2–Al2O3–MnO (<10 Pct)–FetO(<3 pct) slags saturated with liquid iron, Metall. Mater. Trans. B, 26(1995), No. 2, p. 295. doi: 10.1007/BF02660972
    [28]
    Y. Haruna, Removal of Inclusions from Cast Superalloy Revert [Dissertation], University of British Columbia, Vancouver, 1994.
    [29]
    Y.Z. Luo, J.M. Zhang, Z.M. Liu, C. Xiao, and S.Z. Wu, In situ observation and thermodynamic calculation of MnS in 49MnVS3 non-quenched and tempered steel, Acta Metall. Sin. Engl. Lett., 24(2011), No. 4, p. 326.
    [30]
    T. Matsushita and K. Mukai, Chemical Thermodynamics in Materials Science : From Basics to Practical Applications, Springer, Singapore, 2018.
    [31]
    S.B. Rumyantseva, B.A. Rumyantsev, V.N. Simonov, G.S. Sprygin, and V.N. Kashirtsev, Optimum deoxidation of a Kh65NVFT chromium–nickel alloy containing refractory metals, Russ. Metall. Met., 2020(2020), No. 12, p. 1349. doi: 10.1134/S0036029520120174
    [32]
    S. Takaya, T. Furukawa, G. Müller, et al., Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth, J. Nucl. Mater., 428(2012), No. 1-3, p. 125. doi: 10.1016/j.jnucmat.2011.06.046
    [33]
    R. Filip, M. Zagula-Yavorska, M. Pytel, J. Romanowska, M. Maliniak, and J. Sieniawski, The oxidation resistance of nonmodified and Zr-modified aluminide coatings deposited by the CVD method, Solid State Phenom., 227(2015), p. 361. doi: 10.4028/www.scientific.net/SSP.227.361
    [34]
    H. Qian, The Effect of Processing Parameters on Structure Evolution during Laser Additive Manufacturing and Post-processing of Niobium-Silicide Based Alloys [Dissertation], University of Leicester, Leicester, 2021.
    [35]
    M.L. Turpin and J.F. Elliott, Nucleation of oxide inclusions in iron melts, J. Iron. Steel. Inst., 204(1966), p. 217.
    [36]
    T. Gheno and B. Gleeson, Kinetics of Al2O3-scale growth by oxidation and dissolution in molten silicate, Oxid. Met., 87(2017), No. 3, p. 527.
    [37]
    J.A. Murdzek and S.M. George, Effect of crystallinity on thermal atomic layer etching of hafnium oxide, zirconium oxide, and hafnium zirconium oxide, J. Vac. Sci. Technol. A: Vac. Surf. Films, 38(2020), No. 2, art. No. 022608. doi: 10.1116/1.5135317
    [38]
    D.L. You, S.K. Michelic, G. Wieser, and C. Bernhard, Modeling of manganese sulfide formation during the solidification of steel, J. Mater. Sci., 52(2017), No. 3, p. 1797. doi: 10.1007/s10853-016-0470-y
    [39]
    D.L. You, S.K. Michelic, P. Presoly, J.H. Liu, and C. Bernhard, Modeling inclusion formation during solidification of steel: A review, Metals, 7(2017), No. 11, art. No. 460. doi: 10.3390/met7110460
    [40]
    N. Aritomi and K. Gunji, Morphology and formation mechanism of dendritic inclusions in iron and iron-nickel alloys deoxidized with silicon and solidified unidirectionally, ISIJ Int., 19(1979), No. 3, p. 152. doi: 10.2355/isijinternational1966.19.152
    [41]
    E. Steinmetz and H.U. Lindenberg, Morphology of inclusions during deoxidation (of Fe melts) with Al, Arch. Eisenhuttenwes., 47(1976), p. 199.
    [42]
    L.F. Zhang, S. Taniguchi, and K.K. Cai, Fluid flow and inclusion removal in continuous casting tundish, Metall. Mater. Trans. B, 31(2000), No. 2, p. 253. doi: 10.1007/s11663-000-0044-9
    [43]
    C.J. Xuan, A.V. Karasev, and P.G. Jönsson, Evaluation of agglomeration mechanisms of non-metallic inclusions and cluster characteristics produced by Ti/Al complex deoxidation in Fe-10mass% Ni alloy, ISIJ Int., 56(2016), No. 7, p. 1204. doi: 10.2355/isijinternational.ISIJINT-2016-030
    [44]
    W. Mu, N. Dogan, and K.S. Coley, Agglomeration of non-metallic inclusions at the steel/Ar interface: Model application, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2092. doi: 10.1007/s11663-017-0998-5
    [45]
    O. Buiu, W. Davey, Y. Lu, I.Z. Mitrovic, and S. Hall, Ellipsometric analysis of mixed metal oxides thin films, Thin Solid Films, 517(2008), No. 1, p. 453. doi: 10.1016/j.tsf.2008.08.119
    [46]
    K.L. Chen, D.Y. Wang, D. Hou, T.P. Qu, J. Tian, and H.H. Wang, Effect of interfacial properties on agglomeration of inclusions in molten steels, ISIJ Int., 59(2019), No. 10, p. 1735. doi: 10.2355/isijinternational.ISIJINT-2019-053
    [47]
    K. Nakajima, W. Mu, and P.G. Jönsson, Assessment of a simplified correlation between wettability measurement and dispersion/coagulation potency of oxide particles in ferrous alloy melt, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2229. doi: 10.1007/s11663-019-01624-x
    [48]
    C.Y. Chain, R.A. Quille, and A.F. Pasquevich, Ball milling induced solid-state reactions in the La2O3–HfO2 ceramic system, J. Alloys Compd., 495(2010), No. 2, p. 524. doi: 10.1016/j.jallcom.2009.10.130
    [49]
    S. Kimura, K. Nakajima, and S. Mizoguchi, Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels, Metall. Mater. Trans. B, 32(2001), No. 1, p. 79. doi: 10.1007/s11663-001-0010-1
    [50]
    M. Söder, P. Jönsson, and L. Jonsson, Inclusion growth and removal in gas-stirred ladles, Steel Res. Int., 75(2004), No. 2, p. 128. doi: 10.1002/srin.200405938
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1473) PDF Downloads(48) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return