Zhiliang Yang, Kang An, Yuchen Liu, Zhijian Guo, Siwu Shao, Jinlong Liu, Junjun Wei, Liangxian Chen, Lishu Wu, and Chengming Li, Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2287-2299. https://doi.org/10.1007/s12613-024-2834-7
Cite this article as:
Zhiliang Yang, Kang An, Yuchen Liu, Zhijian Guo, Siwu Shao, Jinlong Liu, Junjun Wei, Liangxian Chen, Lishu Wu, and Chengming Li, Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2287-2299. https://doi.org/10.1007/s12613-024-2834-7
Research Article

Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification

+ Author Affiliations
  • This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor deposition. Substrate bulge height $ \Delta h $ is a factor that affects the edge effect, and it was used to simulate plasma and guide the diamond-film deposition experiments. Finite-element software COMSOL Multiphysics was used to construct a multiphysics (electromagnetic, plasma, and fluid heat transfer fields) coupling model based on electron collision reaction. Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model. The simulation results reflected the experimental trends observed. Plasma discharge at the edge of the substrate accelerated due to the increase in $ \Delta h $ ($ \Delta h $ = 0–3 mm), and the values of electron density ($ {n}_{\mathrm{e}} $), molar concentration of H ($ {C}_{\mathrm{H}} $), and molar concentration of CH3 ($ {C}_{{\mathrm{C}\mathrm{H}}_{3}} $) doubled at the edge (for the special concave sample with $ \Delta h $ = −1 mm, the active chemical groups exhibited a decreased molar concentration at the edge of the substrate). At $ \Delta h $ = 0–3 mm, a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate, and their values increased with $ \Delta h $. The uniformity of film thickness decreased with $ \Delta h $. The Raman spectra of all samples revealed the first-order characteristic peak of diamond near 1332 cm−1. When $ \Delta h $ = −1 mm, tensile stress occurred in all regions of the film. When $ \Delta h $ = 1–3 mm, all areas in the film exhibited compressive stress.
  • loading
  • [1]
    V.A. Kukushkin, M.A. Lobaev, S.A. Bogdanov, et al., Visible and near-infrared photodetector on chemically vapor deposited diamond, Diam. Relat. Mater., 97(2019), art. No. 107444. doi: 10.1016/j.diamond.2019.107444
    [2]
    X.T. Ying, J.L. Luo, P.N. Wang, et al., Ultra-thin freestanding diamond window for soft X-ray optics, Diam. Relat. Mater., 12(2003), No. 3-7, p. 719. doi: 10.1016/S0925-9635(02)00340-0
    [3]
    X.L. Yuan, Y.T. Zheng, X.H. Zhu, et al., Recent progress in diamond-based MOSFETs, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1195. doi: 10.1007/s12613-019-1843-4
    [4]
    J.L. Liu, L.X. Chen, Y.T. Zheng, J.J. Wang, Z.H. Feng, and C.M. Li, Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 850. doi: 10.1007/s12613-017-1469-3
    [5]
    Z. Liu, C.M. Li, L.X. Chen, L.M. Wang, L.F. Hei, and F.X. Lü, Deposition of crackless freestanding diamond films on Mo substrates with Zr interlayer, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 246. doi: 10.1007/s12613-010-0222-y
    [6]
    K. An, L.X. Chen, X.B. Yan, et al., Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films, Ceram. Int., 44(2018), No. 15, p. 17845. doi: 10.1016/j.ceramint.2018.06.253
    [7]
    K. An, L.X. Chen, X.B. Yan, et al., Fracture behavior of diamond films deposited by DC arc plasma jet CVD, Ceram. Int., 44(2018), No. 11, p. 13402. doi: 10.1016/j.ceramint.2018.04.178
    [8]
    Z.N. Qi, Y.T. Zheng, J.J. Wei, et al., Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement, Appl. Therm. Eng., 177(2020), art. No. 115489. doi: 10.1016/j.applthermaleng.2020.115489
    [9]
    P.P. Wang, G.Q. Chen, W.J. Li, et al., Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1821. doi: 10.1007/s12613-020-2114-0
    [10]
    Y.Z. Guo, J.L. Liu, J.W. Liu, et al., Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 703. doi: 10.1007/s12613-019-1944-0
    [11]
    Y.F. Li, J.J. Su, Y.Q. Liu, M.H. Ding, G. Wang, and W.Z. Tang, A circumferential antenna ellipsoidal cavity type MPCVD reactor developed for diamond film deposition, Diam. Relat. Mater., 51(2015), p. 24. doi: 10.1016/j.diamond.2014.11.004
    [12]
    Q. Liang, C.S. Yan, J. Lai, et al., Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition, Cryst. Growth Des., 14(2014), No. 7, p. 3234. doi: 10.1021/cg500693d
    [13]
    B. Wang, J. Weng, Z.T. Wang, J.H. Wang, F. Liu, and L.W. Xiong, Investigation on the influence of the gas flow mode around substrate on the deposition of diamond films in an overmoded MPCVD reactor chamber, Vacuum, 182(2020), art. No. 109659. doi: 10.1016/j.vacuum.2020.109659
    [14]
    Y. Zhao, Y.Z. Guo, L.Z. Lin, et al., Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD, J. Cryst. Growth, 491(2018), p. 89. doi: 10.1016/j.jcrysgro.2018.03.046
    [15]
    M.Q. Ding, L.L. Li, and J.J. Feng, A study of high-quality freestanding diamond films grown by MPCVD, Appl. Surf. Sci., 258(2012), No. 16, p. 5987. doi: 10.1016/j.apsusc.2012.02.025
    [16]
    A.K. Mallik, K.S. Pal, N. Dandapat, B.K. Guha, S. Datta, and D. Basu, Influence of the microwave plasma CVD reactor parameters on substrate thermal management for growing large area diamond coatings inside a 915MHz and moderately low power unit, Diam. Relat. Mater., 30(2012), p. 53. doi: 10.1016/j.diamond.2012.10.001
    [17]
    H.Y. Tsai, C.J. Ting, and C.P. Chou, Evaluation research of polishing methods for large area diamond films produced by chemical vapor deposition, Diam. Relat. Mater., 16(2007), No. 2, p. 253. doi: 10.1016/j.diamond.2006.06.007
    [18]
    E.E. Ashkihazi, V.S. Sedov, D.N. Sovyk, et al., Plateholder design for deposition of uniform diamond coatings on WC–Co substrates by microwave plasma CVD for efficient turning application, Diam. Relat. Mater., 75(2017), p. 169. doi: 10.1016/j.diamond.2017.04.011
    [19]
    Y.C. Li, X.D. Liu, G.Y. Shu, et al., Thinning strategy of substrates for diamond growth with reduced PCD rim: Design and experiments, Diam. Relat. Mater., 101(2020), art. No. 107574. doi: 10.1016/j.diamond.2019.107574
    [20]
    S. Nad, Y.J. Gu, and J. Asmussen, Growth strategies for large and high quality single crystal diamond substrates, Diam. Relat. Mater., 60(2015), p. 26. doi: 10.1016/j.diamond.2015.09.018
    [21]
    S. Nad and J. Asmussen, Analyses of single crystal diamond substrates grown in a pocket substrate holder via MPACVD, Diam. Relat. Mater., 66(2016), p. 36. doi: 10.1016/j.diamond.2016.03.007
    [22]
    V. Sedov, A. Martyanov, A. Altakhov, et al., Effect of substrate holder design on stress and uniformity of large-area polycrystalline diamond films grown by microwave plasma-assisted CVD, Coatings, 10(2020), No. 10, art. No. 939. doi: 10.3390/coatings10100939
    [23]
    L. Li, C.C. Zhao, S.L. Zhang, et al., Simulation of diamond synthesis by microwave plasma chemical vapor deposition with multiple substrates in a substrate holder, J. Cryst. Growth, 579(2022), art. No. 126457. doi: 10.1016/j.jcrysgro.2021.126457
    [24]
    M.Y. Feng, P. Jin, X.Q. Meng, P.F. Xu, J. Wu, and Z.G. Wang, One-step growth of a nearly 2 mm thick CVD single crystal diamond with an enlarged surface by optimizing the substrate holder structure, J. Cryst. Growth, 603(2023), art. No. 127011. doi: 10.1016/j.jcrysgro.2022.127011
    [25]
    H. Yamada, A. Chayahara, and Y. Mokuno, Simplified description of microwave plasma discharge for chemical vapor deposition of diamond, J. Appl. Phys., 101(2007), art. No. 063302. doi: 10.1063/1.2711811
    [26]
    J.J. Su, Y.F. Li, X.L. Li, et al., A novel microwave plasma reactor with a unique structure for chemical vapor deposition of diamond films, Diam. Relat. Mater., 42(2014), p. 28. doi: 10.1016/j.diamond.2013.12.001
    [27]
    M. Füner, C. Wild, and P. Koidl, Numerical simulations of microwave plasma reactors for diamond CVD, Surf. Coat. Technol., 74-75(1995), p. 221. doi: 10.1016/0257-8972(95)08232-8
    [28]
    The LXCat team, Itikawa Database, [2022-04-10]. www.lxcat.net
    [29]
    F. Silva, K. Hassouni, X. Bonnin, and A. Gicquel, Microwave engineering of plasma-assisted CVD reactors for diamond deposition, J. Phys. Condens. Matter, 21(2009), No. 36, art. No. 364202. doi: 10.1088/0953-8984/21/36/364202
    [30]
    S.J. Harris, Gas-phase kinetics during diamond growth: CH4 as-growth species, J. Appl. Phys., 65(1989), No. 8, p. 3044. doi: 10.1063/1.342696
    [31]
    M. Frenklach and H. Wang, Detailed surface and gas-phase chemical kinetics of diamond deposition, Phys. Rev. B, 43(1991), No. 2, p. 1520. doi: 10.1103/PhysRevB.43.1520
    [32]
    K. An, S. Zhang, S.W. Shao, et al., Effects of the electric field at the edge of a substrate to deposit a ϕ100 mm uniform diamond film in a 2.45 GHz MPCVD system, Plasma Sci. Technol., 24(2022), No. 4, art. No. 045502. doi: 10.1088/2058-6272/ac4deb
    [33]
    Y.Z. Zhang, S.W. Yu, J. Gao, et al., Design and simulation of a novel MPCVD reactor with three-cylinder cavity, Vacuum, 200(2022), art. No. 111055. doi: 10.1016/j.vacuum.2022.111055
    [34]
    X.S. Yan, L.M. Zhao, W.Y. Xu, L.W. Chen, H. Jia, and F.K. Liu, Design of an edge tapered 915 MHz/TM021 microwave plasma reactor by numerical analysis, AIP Adv., 11(2021), art. No. 035321. doi: 10.1063/6.0000846
    [35]
    J.A. Cuenca, S. Mandal, E.L.H. Thomas, and O.A. Williams, Microwave plasma modelling in clamshell chemical vapour deposition diamond reactors, Diam. Relat. Mater., 124(2022), art. No. 108917. doi: 10.1016/j.diamond.2022.108917
    [36]
    W.K. Zhao, Y. Teng, K. Tang, et al., Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD, Chin. Phys. B, 31(2022), No. 11, art. No. 118102. doi: 10.1088/1674-1056/ac7298
    [37]
    K. Hassouni, F. Silva, and A. Gicquel, Modelling of diamond deposition microwave cavity generated plasmas, J. Phys. D, 43(2010), No. 15, art. No. 153001. doi: 10.1088/0022-3727/43/15/153001
    [38]
    H. Yamada, Numerical simulations to study growth of single-crystal diamond by using microwave plasma chemical vapor deposition with reactive (H, C, N) species, Jpn. J. Appl. Phys., 51(2012), No. 9R, art. No. 090105. doi: 10.1143/JJAP.51.090105
    [39]
    A.A. Emelyanov, V.A. Pinaev, M. Yu Plotnikov, A.K. Rebrov, N.I. Timoshenko, and I.B. Yudin, Effect of methane flow rate on gas-jet MPCVD diamond synthesis, J. Phys. D, 55(2022), No. 20, art. No. 205202. doi: 10.1088/1361-6463/ac526e
    [40]
    J. Weng, F. Liu, L.W. Xiong, J.H. Wang, and Q. Sun, Deposition of large area uniform diamond films by microwave plasma CVD, Vacuum, 147(2018), p. 134. doi: 10.1016/j.vacuum.2017.10.026
    [41]
    D.G. Goodwin, Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry, J. Appl. Phys., 74(1993), No. 11, p. 6888. doi: 10.1063/1.355063
    [42]
    S.J. Harris and D.G. Goodwin, Growth on the reconstructed diamond (100) surface, J. Phys. Chem., 97(1993), No. 1, p. 23. doi: 10.1021/j100103a007
    [43]
    H. Yamada, A. Chayahara, Y. Mokuno, and S. Shikata, Numerical microwave plasma discharge study for the growth of large single-crystal diamond, Diam. Relat. Mater., 54(2015), p. 9. doi: 10.1016/j.diamond.2014.11.005
    [44]
    R.H. Zhu, J.L. Liu, L.X. Chen, J. Wei, L.F. Hei, and C.M. Li, Research on 1420 cm−1 characteristic peak of free-standing diamond films in raman spectrum, J. Synth. Cryst., 44(2015), No. 4, p. 867.
    [45]
    K.S. Pal, A.K. Mallik, N. Dandapat, et al., Microscopic properties of MPCVD diamond coatings studied by micro-Raman and micro-photoluminescence spectroscopy, Bull. Mater. Sci., 38(2015), No. 2, p. 537. doi: 10.1007/s12034-015-0860-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(1208) PDF Downloads(50) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return