Qian Cheng, Zerui Lei, Guangjun Mei,  and Jianhua Chen, Impact of ethanol on the flotation efficiency of imidazolium ionic liquids as collectors: Insights from dynamic surface tension and solvation analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2645-2656. https://doi.org/10.1007/s12613-024-2835-6
Cite this article as:
Qian Cheng, Zerui Lei, Guangjun Mei,  and Jianhua Chen, Impact of ethanol on the flotation efficiency of imidazolium ionic liquids as collectors: Insights from dynamic surface tension and solvation analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2645-2656. https://doi.org/10.1007/s12613-024-2835-6
Research Article

Impact of ethanol on the flotation efficiency of imidazolium ionic liquids as collectors: Insights from dynamic surface tension and solvation analysis

+ Author Affiliations
  • Corresponding author:

    Guangjun Mei    E-mail: meiguangjun@aliyun.com

  • Received: 2 September 2023Revised: 30 December 2023Accepted: 17 January 2024Available online: 19 January 2024
  • To conduct extensive research on the application of ionic liquids as collectors in mineral flotation, ethanol (EtOH) was used as a solvent to dissolve hydrophobic ionic liquids (ILs) to simplify the reagent regime. Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures. When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride (C12[mim]Cl) and as a collector for pure quartz flotation tests at a concentration of 1 × 10−5 mol·L−1, quartz recovery increased from 23.77% to 77.91% compared with ILs dissolved in water. However, quartz recovery of 1-dodecyl-3-methylimidazolium hexafluorophosphate (C12[mim]PF6) decreased from 60.45% to 24.52% under the same conditions. The conditional experiments under 1 × 10−5 mol·L−1 ILs for EtOH concentration and under 2vol% EtOH for ILs concentration confirmed this difference. After being affected by EtOH, the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and recovery for the C12[mim]Cl collector, whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased. On the basis of these differences and observations of flotation foam, two-phase bubble observation tests were carried out. The EtOH promoted the foam height of two ILs during aeration. It accelerated static froth defoaming after aeration stopped, and the foam of C12[mim]PF6 defoaming especially quickly. In the discussion of flotation tests and foam observation, an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH. The solvation effect was verified through Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Zeta potential tests. Although EtOH affects the adsorption of ILs on the ore surface during flotation negatively, it holds an positive value of inhibiting foam merging during flotation aeration and accelerating the defoaming of static foam. And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector, facilitating effective mixed ore separation even under inhibitor-free conditions.
  • loading
  • [1]
    K.R. Seddon, A taste of the future, Nat. Mater., 2(2003), No. 6, p. 363. doi: 10.1038/nmat907
    [2]
    S.A. Forsyth, J.M. Pringle, and D.R. MacFarlane, Ionic liquids—An overview, Aust. J. Chem., 57(2004), No. 2, art. No. 113. doi: 10.1071/CH03231
    [3]
    Y.L. Wang, H.Y. He, C.L. Wang, et al., Insights into ionic liquids: From Z-bonds to quasi-liquids, JACS Au, 2(2022), No. 3, p. 543. doi: 10.1021/jacsau.1c00538
    [4]
    B.A.D. Neto and J. Spencer, The impressive chemistry, applications and features of ionic liquids: Properties, catalysis & catalysts and trends, J. Braz. Chem. Soc., 23(2012), No. 6, p. 987. doi: 10.1590/S0103-50532012000600002
    [5]
    Y. Liang, S.X. Bao, Y.M. Zhang, B. Chen, and C. Yu, Adsorption behavior of vanadium using supported 1-butyl-3-methylimidazolium chloride ionic liquid, Miner. Process. Extr. Metall. Rev., 45(2024), No. 3, p. 238. doi: 10.1080/08827508.2022.2141733
    [6]
    B.Y. Liu and N.X. Jin, The applications of ionic liquid as functional material: A review, Curr. Org. Chem., 20(2016), No. 20, p. 2109. doi: 10.2174/1385272820666160527101844
    [7]
    W.J. Qian, J. Texter, and F. Yan, Frontiers in poly(ionic liquid)s: Syntheses and applications, Chem. Soc. Rev., 46(2017), No. 4, p. 1124. doi: 10.1039/C6CS00620E
    [8]
    P.C. Marr and A.C. Marr, Ionic liquid gel materials: Applications in green and sustainable chemistry, Green Chem., 18(2016), No. 1, p. 105. doi: 10.1039/C5GC02277K
    [9]
    F.K. Chong, F.T. Eljack, M. Atilhan, D.C.Y. Foo and N.G. Chemmangattuvalappil, Ionic liquid design for enhanced carbon dioxide capture-A computer aided molecular design approach, Chem. Eng., 39(2014), No. 253.
    [10]
    A.M. Vieira and A.E.C. Peres, The effect of amine type, pH, and size range in the flotation of quartz, Miner. Eng., 20(2007), No. 10, p. 1008. doi: 10.1016/j.mineng.2007.03.013
    [11]
    A. Liu, J.C. Fan, and M.Q. Fan, Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz (001) surface in the aqueous solution, Int. J. Miner. Process., 134(2015), p. 1. doi: 10.1016/j.minpro.2014.11.001
    [12]
    V. Nunna, S.P. Suthers, M.I. Pownceby, and G.J. Sparrow, Beneficiation strategies for removal of silica and alumina from low-grade hematite–goethite iron ores, Miner. Process. Extr. Metall. Rev., 43(2022), No. 8, p. 1049. doi: 10.1080/08827508.2021.2003353
    [13]
    D.S. He, K.X. Shang, W.M. Xie, F. Chen, M. Benzaazoua, and T.N. Aleksandrova, Study on the foam behavior of amine reagents adsorbed at gas–liquid and gas–liquid–solid interfaces, Physicochem. Probl. Miner. Process., 57(2020), No. 1, p. 192. doi: 10.37190/ppmp/130997
    [14]
    S.B. Liu, Y.Y. Ge, J. Fang, J. Yu, and Q. Gao, An investigation of froth stability in reverse flotation of collophane, Miner. Eng., 155(2020), art. No. 106446. doi: 10.1016/j.mineng.2020.106446
    [15]
    X.Q. Weng, G.J. Mei, T.T. Zhao, and Y. Zhu, Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation, Sep. Purif. Technol., 103(2013), p. 187. doi: 10.1016/j.seppur.2012.10.015
    [16]
    R.Q. Xie, Y.M. Zhu, J. Liu, and Y.J. Li, The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz, Sep. Purif. Technol., 264(2021), art. No. 118445. doi: 10.1016/j.seppur.2021.118445
    [17]
    V.A. Araujo, N. Lima, A. Azevedo, L. Bicalho, and J. Rubio, Column reverse rougher flotation of iron bearing fine tailings assisted by HIC and a new cationic collector, Miner. Eng., 156(2020), art. No. 106531. doi: 10.1016/j.mineng.2020.106531
    [18]
    R. Li, C. Marion, E.R.L. Espiritu, R. Multani, X.Q. Sun, and K.E. Waters, Investigating the use of an ionic liquid for rare earth mineral flotation, J. Rare Earths, 39(2021), No. 7, p. 866. doi: 10.1016/j.jre.2020.09.003
    [19]
    D. Azizi, F. Larachi, and M. Latifi, Ionic-liquid collectors for rare-earth minerals flotation:Case of tetrabutylammonium bis(2-ethylhexyl)-phosphate for monazite and bastnäsite recovery, Colloids Surf. A, 506(2016), p. 74. doi: 10.1016/j.colsurfa.2016.06.011
    [20]
    X.C. Zhu, H.B. Wei, M.Y. Hou, Q.B. Wang, X.F. You, and L. Li, Thermodynamic behavior and flotation kinetics of an ionic liquid microemulsion collector for coal flotation, Fuel, 262(2020), art. No. 116627. doi: 10.1016/j.fuel.2019.116627
    [21]
    H. Qiu, C. Degenhardt, N. Feuge, D. Goldmann, and R. Wilhelm, Influencing the froth flotation of LiAlO2 and melilite solid solution with ionic liquids, RSC Adv., 12(2022), No. 45, p. 29562. doi: 10.1039/D2RA02922G
    [22]
    H. Sahoo, S.S. Rath, and B. Das, Use of the ionic liquid-tricaprylmethyl ammonium salicylate (TOMAS) as a flotation collector of quartz, Sep. Purif. Technol., 136(2014), p. 66. doi: 10.1016/j.seppur.2014.08.034
    [23]
    H. Sahoo, S.S. Rath, S.K. Jena, B.K. Mishra, and B. Das, Aliquat-336 as a novel collector for quartz flotation, Adv. Powder Technol., 26(2015), No. 2, p. 511. doi: 10.1016/j.apt.2014.12.010
    [24]
    H. Sahoo, N. Sinha, S.S. Rath, and B. Das, Ionic liquids as novel quartz collectors: Insights from experiments and theory, Chem. Eng. J., 273(2015), p. 46. doi: 10.1016/j.cej.2015.03.050
    [25]
    H. Sahoo, S.S. Rath, B. Das, and B.K. Mishra, Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths, Miner. Eng., 95(2016), p. 107. doi: 10.1016/j.mineng.2016.06.024
    [26]
    H. Li, G. Mei, M. Yu, Q. Cheng, and G. Zhu, The mechanism study on aryl-substituted aromatic acid ionic liquid as the collector for quartz flotation, Physicochem. Probl. Miner. Process., 55(2019), No. 5, p. 1239.
    [27]
    J.Q. Zhou, G.J. Mei, M.M. Yu, and X.W. Song, Effect and mechanism of quaternary ammonium salt ionic liquid as a collector on desulfurization and desilication from artificial mixed bauxite using flotation, Miner. Eng., 181(2022), art. No. 107523. doi: 10.1016/j.mineng.2022.107523
    [28]
    Q.Z. Yuan, G.J. Mei, C. Liu, Q. Cheng, and S.Y. Yang, A novel sulfur-containing ionic liquid collector for the reverse flotation separation of pyrrhotite from magnetite, Sep. Purif. Technol., 303(2022), art. No. 122189. doi: 10.1016/j.seppur.2022.122189
    [29]
    Q. Cheng, G.J. Mei, W. Xu, and Q.Z. Yuan, Flotation of quartz using imidazole ionic liquid collectors with different counterions, Miner. Eng., 180(2022), art. No. 107491. doi: 10.1016/j.mineng.2022.107491
    [30]
    M. Wu, M.M. Yu, Q. Cheng, et al., Flotation recovery of Y2O3 from waste phosphors using ionic liquids as collectors, Chem. Phys. Lett., 825(2023), art. No. 140608. doi: 10.1016/j.cplett.2023.140608
    [31]
    J. Fang, Y.Y. Ge, and J. Yu, Effects of particle size and wettability on froth stability in a collophane flotation system, Powder Technol., 379(2021), p. 576. doi: 10.1016/j.powtec.2020.11.028
    [32]
    K.Y. Guo, T.F. Wang, G.Y. Yang, and J.F. Wang, Distinctly different bubble behaviors in a bubble column with pure liquids and alcohol solutions, J. Chem. Technol. Biotechnol., 92(2017), No. 2, p. 432. doi: 10.1002/jctb.5022
    [33]
    S.R. Syeda, A. Afacan, and K.T. Chuang, Effect of surface tension gradient on froth stabilization and tray efficiency, Chem. Eng. Res. Des., 82(2004), No. 6, p. 762. doi: 10.1205/026387604774196046
    [34]
    S. Andrew, Frothing in two-component liquid mixtures, [in] Proceedings of the Symposium on Chemical Process Hazards with Special Reference to Plant Design, United Kingdom, 1960, p. 73.
    [35]
    G. Marrucci and L. Nicodemo, Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes, Chem. Eng. Sci., 22(1967), No. 9, p. 1257. doi: 10.1016/0009-2509(67)80190-8
    [36]
    P.C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry , Revised and Expanded, CRC Press, Boca Raton, 2016.
    [37]
    M.C. Fuerstenau and K.N. Han, Principles of Mineral Processing, SME media, Staines, 2003.
    [38]
    L. Wang, Y. Peng, K. Runge, and D. Bradshaw, A review of entrainment: Mechanisms, contributing factors and modelling in flotation, Miner. Eng., 70(2015), p. 77. doi: 10.1016/j.mineng.2014.09.003
    [39]
    X.Y. Zhu, H. Sun, D.J. Zhang, and C.B. Liu, Theoretical study on the interactions between methanol and imidazolium-based ionic liquids, J. Mol. Model., 17(2011), No. 8, p. 1997. doi: 10.1007/s00894-010-0879-1
    [40]
    Y. Wang, H.R. Li, and S.J. Han, A theoretical investigation of the interactions between water molecules and ionic liquids, J. Phys. Chem. B, 110(2006), No. 48, p. 24646. doi: 10.1021/jp064134w
    [41]
    J. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions : Modern Sspects, Springer Science & Business Media, Berlin, 1998.
    [42]
    H.L. Zhang, Z.J. Xu, W. Sun, et al., Selective adsorption mechanism of dodecylamine on the hydrated surface of hematite and quartz, Sep. Purif. Technol., 275(2021), art. No. 119137. doi: 10.1016/j.seppur.2021.119137
    [43]
    S.R. Rao, Surface Chemistry of Froth Flotation : Volume 1 : Fundamentals, Springer Science & Business Media, Berlin, 2013.
    [44]
    V. Pino, C. Yao, and J.L. Anderson, Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent–water mixtures, J. Colloid Interface Sci., 333(2009), No. 2, p. 548. doi: 10.1016/j.jcis.2009.02.037
    [45]
    J.J. Wang, L.M. Zhang, H.Y. Wang, and C.Z. Wu, Aggregation behavior modulation of 1-dodecyl-3-methylimidazolium bromide by organic solvents in aqueous solution, J. Phys. Chem. B, 115(2011), No. 17, p. 4955. doi: 10.1021/jp201604u
    [46]
    A. Rodríguez, M.D. Graciani, and M.L. Moyá, Effects of addition of polar organic solvents on micellization, Langmuir, 24(2008), No. 22, p. 12785. doi: 10.1021/la802320s
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(429) PDF Downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return