Yingbo Dong, Jinyu Zan,  and Hai Lin, Bioleaching of vanadium from stone coal vanadium ore by Bacillus mucilaginosus: Influencing factors and mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1828-1838. https://doi.org/10.1007/s12613-024-2836-5
Cite this article as:
Yingbo Dong, Jinyu Zan,  and Hai Lin, Bioleaching of vanadium from stone coal vanadium ore by Bacillus mucilaginosus: Influencing factors and mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1828-1838. https://doi.org/10.1007/s12613-024-2836-5
Research Article

Bioleaching of vanadium from stone coal vanadium ore by Bacillus mucilaginosus: Influencing factors and mechanism

+ Author Affiliations
  • Corresponding author:

    Hai Lin    E-mail: linhai@ces.ustb.edu.cn

  • Received: 14 October 2023Revised: 14 January 2024Accepted: 17 January 2024Available online: 19 January 2024
  • Vanadium and its derivatives are used in various industries, including steel, metallurgy, pharmaceuticals, and aerospace engineering. Although China has massive reserves of stone coal resources, these resources have low grades. Therefore, the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore. Herein, Bacillus mucilaginosus was selected as the leaching strain. The vanadium leaching rate reached 35.5% after 20 d of bioleaching under optimal operating conditions. The cumulative vanadium leaching rate in the contact group reached 35.5%, which was higher than that in the noncontact group (9.3%). The metabolites of B. mucilaginosus, such as oxalic, tartaric, citric, and malic acids, dominated in bioleaching, accounting for 73.8% of the vanadium leaching rate. Interestingly, during leaching, the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells, and enzyme activity increased by 1.335–1.905 U. Enzyme activity positively promoted the production of metabolite organic acids, and total organic acid content increased by 39.31 mg·L−1, resulting in a reduction of 2.51 in the pH of the leaching system with stone coal. This effect favored the leaching of vanadium from stone coal. Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm. Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.
  • loading
  • Supplementary Information-s12613-024-2836-5.docx
  • [1]
    X.X. Guo, S.M. Chen, Y.W. Han, C.B. Hao, X.J. Feng, and B.G. Zhang, Bioleaching performance of vanadium-bearing smelting ash by Acidithiobacillus ferrooxidans for vanadium recovery, J. Environ. Manage., 336(2023), art. No. 117615. doi: 10.1016/j.jenvman.2023.117615
    [2]
    X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Oxidation process of low-grade vanadium slag in presence of Na2CO3, Trans. Nonferrous Met. Soc. China, 21(2011), No. 8, p. 1860. doi: 10.1016/S1003-6326(11)60942-4
    [3]
    F.A.C. Amorim, B. Welz, A.C.S. Costa, F.G. Lepri, M.G.R. Vale, and S.L.C. Ferreira, Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques, Talanta, 72(2007), No. 2, p. 349. doi: 10.1016/j.talanta.2006.12.015
    [4]
    J.C. Lee, Kurniawan, E.Y. Kim, K.W. Chung, R. Kim, and H.S. Jeon, A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production, J. Mater. Res. Technol., 12(2021), p. 343. doi: 10.1016/j.jmrt.2021.02.065
    [5]
    H. Peng, J. Guo, B. Li, H.S. Huang, W.B. Shi, and Z.H. Liu, Removal and recovery of vanadium from waste by chemical precipitation, adsorption, solvent extraction, remediation, photo-catalyst reduction and membrane filtration. A review, Environ. Chem. Lett., 20(2022), No. 3, p. 1763. doi: 10.1007/s10311-022-01395-z
    [6]
    Z.L. Wang, B.G. Zhang, C. He, J.X. Shi, M.X. Wu, and J.H. Guo, Sulfur-based mixotrophic vanadium (V) bio-reduction towards lower organic requirement and sulfate accumulation, Water Res., 189(2021), art. No. 116655. doi: 10.1016/j.watres.2020.116655
    [7]
    B. Zhang, Y. Jiang, K. Zuo, C. He, Y. Dai, and Z.J. Ren, Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater, J. Hazard. Mater., 382(2020), art. No. 121228. doi: 10.1016/j.jhazmat.2019.121228
    [8]
    B.G. Zhang, Y.N. Li, Y.M. Fei, and Y.T. Cheng, Novel pathway for vanadium(V) bio-detoxification by gram-positive Lactococcus raffinolactis , Environ. Sci. Technol., 55(2021), No. 3, p. 2121.
    [9]
    A. Mahdavian, A. Shafyei, E.K. Alamdari, and D. Haghshenas, Recovery of vanadium from Esfahan steel company steel slag: Optimizing of roasting and leaching parameters, Int. J. Iron Steel Soc. Iran, 3(2006), p. 17.
    [10]
    S.M.J. Mirazimi, Z. Abbasalipour, and F. Rashchi, Vanadium removal from LD converter slag using bacteria and fungi, J. Environ. Manage., 153(2015), p. 144. doi: 10.1016/j.jenvman.2015.02.008
    [11]
    A. Nikiforova, O. Kozhura, and O. Pasenko, Application of lime in two-stage purification of leaching solution of spent vanadium catalysts for sulfuric acid production, Hydrometallurgy, 172(2017), p. 51. doi: 10.1016/j.hydromet.2017.06.020
    [12]
    E. Romanovskaia, V. Romanovski, W. Kwapinski, and I. Kurilo, Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: Sustainable approach, Hydrometallurgy, 200(2021), art. No. 105568. doi: 10.1016/j.hydromet.2021.105568
    [13]
    J.X. Li, B.G. Zhang, M. Yang, and H. Lin, Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms, J. Hazard. Mater., 416(2021), art. No. 125843. doi: 10.1016/j.jhazmat.2021.125843
    [14]
    Y.G. Teng, J. Yang, Z.J. Sun, J.S. Wang, R. Zuo, and J.Q. Zheng, Environmental vanadium distribution, mobility and bioaccumulation in different land-use districts in Panzhihua Region, SW China, Environ. Monit. Assess., 176(2011), p. 605. doi: 10.1007/s10661-010-1607-0
    [15]
    Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116. doi: 10.1016/j.hydromet.2011.06.002
    [16]
    N. Rodella, A. Bosio, A. Zacco, et al., Arsenic stabilization in coal fly ash through the employment of waste materials, J. Environ. Chem. Eng., 2(2014), No. 3, p. 1352. doi: 10.1016/j.jece.2014.05.011
    [17]
    L. Chen, J.R. Liu, W.F. Hu, J. Gao, and J.Y. Yang, Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation, J. Hazard. Mater., 405(2021), art. No. 124200. doi: 10.1016/j.jhazmat.2020.124200
    [18]
    Y. Guo, H.Y. Li, Y.H. Yuan, et al., Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 974. doi: 10.1007/s12613-020-2105-1
    [19]
    J.R. Ju, Y.L. Feng, H.R. Li, S.L. Liu, and C.L. Xu, Separation and recovery of V, Ti, Fe and Ca from acidic wastewater and vanadium-bearing steel slag based on a collaborative utilization process, Sep. Purif. Technol., 276(2021), art. No. 119335. doi: 10.1016/j.seppur.2021.119335
    [20]
    D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, and Y.H. Rhee, Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs, Hydrometallurgy, 88(2007), No. 1-4, p. 202. doi: 10.1016/j.hydromet.2007.05.007
    [21]
    D. Santhiya and Y.P. Ting, Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid, J. Biotechnol., 116(2005), No. 2, p. 171. doi: 10.1016/j.jbiotec.2004.10.011
    [22]
    H.B. Zhao, J. Wang, X.W. Gan, et al., Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum , Bioresour. Technol., 194(2015), p. 28.
    [23]
    P.R. Gogate and A.B. Pandit, A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions, Adv. Environ. Res., 8(2004), No. 3-4, p. 553. doi: 10.1016/S1093-0191(03)00031-5
    [24]
    I. Kamika and M.N.B. Momba, Synergistic effects of vanadium and nickel on heavy metal-tolerant microbial species in wastewater systems, Desalin. Water Treat., 51(2013), No. 40-42, p. 7431. doi: 10.1080/19443994.2013.777680
    [25]
    M.A. Larsson, S. Baken, J.P. Gustafsson, G. Hadialhejazi, and E. Smolders, Vanadium bioavailability and toxicity to soil microorganisms and plants, Environ. Toxicol. Chem., 32(2013), No. 10, p. 2266. doi: 10.1002/etc.2322
    [26]
    X. Li, W.L. Yang, H.J. He, et al., Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater, Bioresour. Technol., 251(2018), p. 274. doi: 10.1016/j.biortech.2017.12.058
    [27]
    A. Safonov, V. Tregubova, V. Ilin, et al., Comparative study of lanthanum, vanadium, and uranium bioremoval using different types of microorganisms, Water Air Soil Pollut., 229(2018), art. No. 82. doi: 10.1007/s11270-018-3740-2
    [28]
    X.X. Sun, L. Qiu, M. Kolton, et al., VV reduction by Polaromonas spp. in vanadium mine tailings, Environ. Sci. Technol., 54(2020), No. 22, p. 14442. doi: 10.1021/acs.est.0c05328
    [29]
    X.Y. Xu, S.Q. Xia, L.J. Zhou, Z.Q. Zhang, and B.E. Rittmann, Bioreduction of vanadium (V) in groundwater by autohydrogentrophic bacteria: Mechanisms and microorganisms, J. Environ. Sci., 30(2015), p. 122. doi: 10.1016/j.jes.2014.10.011
    [30]
    K. Yin, Q.N. Wang, M. Lv, and L.X. Chen, Microorganism remediation strategies towards heavy metals, Chem. Eng. J., 360(2019), p. 1553. doi: 10.1016/j.cej.2018.10.226
    [31]
    B.G. Zhang, L.T. Hao, C.X. Tian, et al., Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture, Bioresour. Technol., 192(2015), p. 410. doi: 10.1016/j.biortech.2015.05.102
    [32]
    B.G. Zhang, S. Wang, M.H. Diao, et al., Microbial community responses to vanadium distributions in mining geological environments and bioremediation assessment, J. Geophys. Res. Biogeosci., 124(2019), No. 3, p. 601. doi: 10.1029/2018JG004670
    [33]
    D.S. Holmes, Review of international biohydrometallurgy symposium, Frankfurt, 2007, Hydrometallurgy, 92(2008), No. 1-2, p. 69. doi: 10.1016/j.hydromet.2008.01.003
    [34]
    T.J. Xu, T. Ramanathan, and Y.P. Ting, Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus, Biotechnol. Rep., 3(2014), p. 8. doi: 10.1016/j.btre.2014.05.009
    [35]
    J. Zeng, M. Gou, Y.Q. Tang, G.Y. Li, Z.Y. Sun, and K. Kida, Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community, Bioresour. Technol., 218(2016), p. 859. doi: 10.1016/j.biortech.2016.07.051
    [36]
    Z.Z. Huang, S.S. Feng, Y.J. Tong, and H.L. Yang, Enhanced “contact mechanism” for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus , J. Environ. Manage., 242(2019), p. 11.
    [37]
    B.B. Mo and B. Lian, Interactions between Bacillus mucilaginosus and silicate minerals (weathered adamellite and feldspar): Weathering rate, products, and reaction mechanisms, Chin. J. Geochem., 30(2011), p. 187. doi: 10.1007/s11631-011-0500-z
    [38]
    Y. Wang, Z.L. Cai, Y.M. Zhang, and Q.S. Zheng, Green recovery of vanadium from vanadium-bearing shale under the biological action by Bacillus mucilaginosus and its effect on mineral dissolution, J. Environ. Chem. Eng., 10(2022), No. 1, art. No. 107048. doi: 10.1016/j.jece.2021.107048
    [39]
    H.Q. Tian, Z.L. Cai, Y.M. Zhang, and Q.S. Zheng, Chemical mutation of Bacillus mucilaginosus genes to enhance the bioleaching of vanadium-bearing shale, Biochem. Eng. J., 197(2023), art. No. 108962. doi: 10.1016/j.bej.2023.108962
    [40]
    Y.B. Dong, Y. Liu, H. Lin, and C.J. Liu, Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus , Trans. Nonferrous Met. Soc. China, 29(2019), No. 4, p. 849.
    [41]
    Z.L. Cai, Y. Wang, Y.M. Zhang, and Q.S. Zheng, Improvement on bioleaching interfacial behavior between Bacillus mucilaginosus and vanadium-bearing shale by surfactant additive, J. Environ. Chem. Eng., 10(2022), No. 6, art. No. 108911. doi: 10.1016/j.jece.2022.108911
    [42]
    L.L. Xiao and B. Lian, Heterologously expressed carbonic anhydrase from Bacillus mucilaginosus promoting CaCO3 formation by capturing atmospheric CO2, Carbonates Evaporites, 31(2016), No. 1, p. 39. doi: 10.1007/s13146-015-0239-4
    [43]
    S. Chang, Y. He, Y.X. Li, and X.M. Cui, Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture, J. Cleaner Prod., 316(2021), art. No. 128163. doi: 10.1016/j.jclepro.2021.128163
    [44]
    S. Sundaram and I.S. Thakur, Induction of calcite precipitation through heightened production of extracellular carbonic anhydrase by CO2 sequestering bacteria, Bioresour. Technol., 253(2018), p. 368. doi: 10.1016/j.biortech.2018.01.081
    [45]
    Y. Pocker and J.T. Stone, The catalytic versatility of erythrocyte carbonic anhydrase. VI. Kinetic studies of noncompetitive inhibition of enzyme-catalyzed hydrolysis of p-nitrophenyl acetate, Biochemistry, 7(1968), No. 8, p. 2936. doi: 10.1021/bi00848a034
    [46]
    T. Hirajima, H. Miki, G.P.W. Suyantara, et al., Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation, Miner. Eng., 100(2017), p. 83. doi: 10.1016/j.mineng.2016.10.007
    [47]
    Y.B. Dong, S.J. Chong, and H. Lin, Enhanced effect of biochar on leaching vanadium and copper from stone coal tailings by Thiobacillus ferrooxidans , Environ. Sci. Pollut. Res., 29(2022), p. 20398.
    [48]
    L. Dusengemungu, G. Kasali, C. Gwanama, and B. Mubemba, Overview of fungal bioleaching of metals, Environ. Adv., 5(2021), art. No. 100083. doi: 10.1016/j.envadv.2021.100083
    [49]
    T.H. Nguyen, S. Won, M.G. Ha, D.D. Nguyen, and H.Y. Kang, Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings, Chemosphere, 282(2021), art. No. 131108. doi: 10.1016/j.chemosphere.2021.131108
    [50]
    J. Hajihoseini and M. Fakharpour, Effect of temperature on bioleaching of iron impurities from Kaolin by Aspergillus niger fungal, J. Asian Ceram. Soc., 7(2019), No. 1, p. 82. doi: 10.1080/21870764.2019.1571152
    [51]
    S. Qayyum, K. Meng, S. Pervez, F. Nawaz, and C.S. Peng, Optimization of pH, temperature and carbon source for bioleaching of heavy metals by Aspergillus flavus isolated from contaminated soil, Main Group Met. Chem., 42(2019), No. 1, p. 1. doi: 10.1515/mgmc-2018-0038
    [52]
    J.M. Zhao, W.J. Wu, X. Zhang, M.L. Zhu, and W.S. Tan, Characteristics of bio-desilication and bio-flotation of Paenibacillus mucilaginosus BM-4 on aluminosilicate minerals, Int. J. Miner. Process., 168(2017), p. 40. doi: 10.1016/j.minpro.2017.09.002
    [53]
    X. Wang, H. Lin, Y.B. Dong, and G.Y. Li, Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 253. doi: 10.1007/s12613-018-1568-9
    [54]
    L.L. Xiao, J.C. Hao, W.Y. Wang, et al., The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+Deficiency and the heterologously expressed enzyme promotes calcite dissolution, Geomicrobiol. J., 31(2014), No. 7, p. 632. doi: 10.1080/01490451.2014.884195
    [55]
    W. Li, P.P. Zhou, L.P. Jia, L.J. Yu, X.L. Li, and M. Zhu, Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi, Mycopathologia, 167(2009), p. 37. doi: 10.1007/s11046-008-9143-y
    [56]
    Y.B. Dong, H. Lin, Y. Liu, and Y. Zhao, Blank roasting and bioleaching of stone coal for vanadium recycling, J. Cleaner Prod., 243(2020), art. No. 118625. doi: 10.1016/j.jclepro.2019.118625
    [57]
    D. Fullston, D. Fornasiero, and J. Ralston, Zeta potential study of the oxidation of copper sulfide minerals, Colloids Surf. A, 146(1999), No. 1-3, p. 113. doi: 10.1016/S0927-7757(98)00725-0
    [58]
    Y.Y. Hu, W.T. Liu, W.J. Wang, et al., Biomineralization performance of Bacillus sphaericus under the action of Bacillus mucilaginosus , Adv. Mater. Sci. Eng., 2020(2020), art. No. 6483803.
    [59]
    Y.B. Dong, S.J. Chong, and H. Lin, Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus , Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 283.
    [60]
    W. Sand, T. Gehrke, P.G. Jozsa, and A. Schippers, (Bio)chemistry of bacterial leaching—Direct vs. indirect bioleaching, Hydrometallurgy, 59(2001), No. 2-3, p. 159. doi: 10.1016/S0304-386X(00)00180-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(361) PDF Downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return