Jingdong Huang and Xiao Yang, Oxygen-assisted zinc recovery from electric arc furnace dust using magnesium chloride, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2300-2311. https://doi.org/10.1007/s12613-024-2837-4
Cite this article as:
Jingdong Huang and Xiao Yang, Oxygen-assisted zinc recovery from electric arc furnace dust using magnesium chloride, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2300-2311. https://doi.org/10.1007/s12613-024-2837-4
Research Article

Oxygen-assisted zinc recovery from electric arc furnace dust using magnesium chloride

+ Author Affiliations
  • Corresponding author:

    Xiao Yang    E-mail: yangxiao@westlake.edu.cn

  • Received: 24 October 2023Revised: 16 January 2024Accepted: 17 January 2024Available online: 19 January 2024
  • Electric arc furnace (EAF) dust is an important secondary resource containing metals, such as zinc (Zn) and iron (Fe). Recovering Zn from EAF dust can contribute to resource recycling and reduce environmental impacts. However, the high chemical stability of ZnFe2O4 in EAF dust poses challenges to Zn recovery. To address this issue, a facile approach that involves oxygen-assisted chlorination using molten MgCl2 is proposed. This work focused on elucidating the role of O2 in the reaction between ZnFe2O4 and molten MgCl2. The results demonstrate that MgCl2 effectively broke down the ZnFe2O4 structure, and the high O2 atmosphere considerably promoted the separation of Zn from other components in the form of ZnCl2. The presence of O2 facilitated the formation of MgFe2O4, which stabilized Fe and prevented its chlorination. Furthermore, the excessive use of MgCl2 resulted in increased evaporation loss, and high temperatures promoted the rapid separation of Zn. Building on these findings, we successfully extracted ZnCl2-enriched volatiles from practical EAF dust through oxygen-assisted chlorination. Under optimized conditions, this method achieved exceptional Zn chlorination percentage of over 97% within a short period, while Fe chlorination remained below 1%. The resulting volatiles contained 85wt% of ZnCl2, which can be further processed to produce metallic Zn. The findings offer guidance for the selective recovery of valuable metals, particularly from solid wastes such as EAF dust.
  • loading
  • Supplementary Information-s12613-024-2837-4.docx
  • [1]
    J. Wang, Y.Y. Zhang, K.K. Cui, et al., Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust–A review, J. Cleaner Prod., 298(2021), art. No. 126788. doi: 10.1016/j.jclepro.2021.126788
    [2]
    P.J. Liu, Z.G. Liu, M.S. Chu, J. Tang, L.H. Gao, and R.J. Yan, Green and efficient utilization of stainless steel dust by direct reduction and self-pulverization, J. Hazard. Mater., 413(2021), art. No. 125403. doi: 10.1016/j.jhazmat.2021.125403
    [3]
    D.J.C. Stewart and A.R. Barron, Pyrometallurgical removal of zinc from basic oxygen steelmaking dust–A review of best available technology, Resour. Conserv. Recycl., 157(2020), art. No. 104746. doi: 10.1016/j.resconrec.2020.104746
    [4]
    K. Binnemans, P.T. Jones, Á. Manjón Fernández, and V. Masaguer Torres, Hydrometallurgical processes for the recovery of metals from steel industry by-products: A critical review, J. Sustainable Metall., 6(2020), No. 4, p. 505. doi: 10.1007/s40831-020-00306-2
    [5]
    M. Al-harahsheh, J. Al-Nu’airat, A. Al-Otoom, et al., Treatments of electric arc furnace dust and halogenated plastic wastes: A review, J. Environ. Chem. Eng., 7(2019), No. 1, art. No. 102856. doi: 10.1016/j.jece.2018.102856
    [6]
    X.L. Lin, Z.W. Peng, J.X. Yan, et al., Pyrometallurgical recycling of electric arc furnace dust, J. Cleaner Prod., 149(2017), p. 1079. doi: 10.1016/j.jclepro.2017.02.128
    [7]
    C. Li, W. Liu, F. Jiao, et al., Separation and recovery of zinc, lead and iron from electric arc furnace dust by low temperature smelting, Sep. Purif. Technol., 312(2023), art. No. 123355. doi: 10.1016/j.seppur.2023.123355
    [8]
    U. Brandner, J. Antrekowitsch, and M. Leuchtenmueller, A review on the fundamentals of hydrogen-based reduction and recycling concepts for electric arc furnace dust extended by a novel conceptualization, Int. J. Hydrogen Energy, 46(2021), No. 62, p. 31894. doi: 10.1016/j.ijhydene.2021.07.062
    [9]
    I. Fernández-Olmo, C. Lasa, and A. Irabien, Modeling of zinc solubility in stabilized/solidified electric arc furnace dust, J. Hazard. Mater., 144(2007), No. 3, p. 720. doi: 10.1016/j.jhazmat.2007.01.102
    [10]
    World Steel Association, 2023 World Steel in Figures, Brussels: World Steel Association, 2023, p. 10.
    [11]
    L. Rostek, L.A. Tercero Espinoza, D. Goldmann, and A. Loibl, A dynamic material flow analysis of the global anthropogenic zinc cycle: Providing a quantitative basis for circularity discussions, Resour. Conserv. Recycl., 180(2022), art. No. 106154. doi: 10.1016/j.resconrec.2022.106154
    [12]
    M. Al-Harahsheh, A. Al-Otoom, L. Al-Makhadmah, et al., Pyrolysis of poly(vinyl chloride) and—Electric arc furnacedust mixtures, J. Hazard. Mater., 299(2015), p. 425. doi: 10.1016/j.jhazmat.2015.06.041
    [13]
    Q. Ye, G.H. Li, Z.W. Peng, et al., Microwave-assisted self-reduction of EAF dust-biochar composite briquettes for production of direct reduced iron, Powder Technol., 362(2020), p. 781. doi: 10.1016/j.powtec.2019.10.108
    [14]
    U.S. Geological Survey, Mineral Commodity Summaries 2023, Government Printing Office, 2023.
    [15]
    Y.F. Chen, W.X. Teng, X. Feng, et al., Efficient extraction and separation of zinc and iron from electric arc furnace dust by roasting with FeSO4·7H2O followed by water leaching, Sep. Purif. Technol., 281(2022), art. No. 119936. doi: 10.1016/j.seppur.2021.119936
    [16]
    C. Frilund, M. Kotilainen, J. Barros Lorenzo, P. Lintunen, and K. Kaunisto, Steel manufacturing EAF dust as a potential adsorbent for hydrogen sulfide removal, Energy Fuels, 36(2022), No. 7, p. 3695. doi: 10.1021/acs.energyfuels.1c04235
    [17]
    P. Halli, V. Agarwal, J. Partinen, and M. Lundström, Recovery of Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction, Sep. Purif. Technol., 236(2020), art. No. 116264. doi: 10.1016/j.seppur.2019.116264
    [18]
    W. Lv, M. Gan, X.H. Fan, Z.Y. Ji, and X.L. Chen, Mechanism of calcium oxide promoting the separation of zinc and iron in metallurgical dust under reducing atmosphere, J. Mater. Res. Technol., 8(2019), No. 6, p. 5745. doi: 10.1016/j.jmrt.2019.09.043
    [19]
    N. Menad, J.N. Ayala, F. Garcia-Carcedo, E. Ruiz-Ayúcar, and A. Hernandez, Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust, Waste Manage., 23(2003), No. 6, p. 483. doi: 10.1016/S0956-053X(02)00151-4
    [20]
    M. Omran and T. Fabritius, Effect of steelmaking dust characteristics on suitable recycling process determining: Ferrochrome converter (CRC) and electric arc furnace (EAF) dusts, Powder Technol., 308(2017), p. 47. doi: 10.1016/j.powtec.2016.11.049
    [21]
    C.A. Pickles, Thermodynamic analysis of the selective chlorination of electric arc furnace dust, J. Hazard. Mater., 166(2009), No. 2-3, p. 1030.
    [22]
    H.M. Tang, Z.W. Peng, L.C. Wang, A. Anzulevich, M.J. Rao, and G.H. Li, Direct conversion of electric arc furnace dust to zinc ferrite by roasting: Effect of roasting temperature, J. Sustainable Metall., 9(2023), No. 1, p. 363. doi: 10.1007/s40831-023-00649-6
    [23]
    H.M. Tang, Z.W. Peng, L.C. Wang, et al., Facile synthesis of zinc ferrite as adsorbent from high-zinc electric arc furnace dust, Powder Technol., 405(2022), art. No. 117479. doi: 10.1016/j.powtec.2022.117479
    [24]
    L.C. Wang, Z.W. Peng, X.L. Lin, et al., Microwave-intensified treatment of low-zinc EAF dust: A route toward high-grade metallized product with a focus on multiple elements, Powder Technol., 383(2021), p. 509. doi: 10.1016/j.powtec.2021.01.047
    [25]
    C.M. Tang, Z.Q. Guo, J. Pan, et al., Current situation of carbon emissions and countermeasures in China’s ironmaking industry, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1633. doi: 10.1007/s12613-023-2632-7
    [26]
    R. Chairaksa-Fujimoto, Y. Inoue, N. Umeda, S. Itoh, and T. Nagasaka, New pyrometallurgical process of EAF dust treatment with CaO addition, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 788. doi: 10.1007/s12613-015-1135-6
    [27]
    R. Chairaksa-Fujimoto, K. Maruyama, T. Miki, and T. Nagasaka, The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide, Hydrometallurgy, 159(2016), p. 120. doi: 10.1016/j.hydromet.2015.11.009
    [28]
    T. Miki, R. Chairaksa-Fujimoto, K. Maruyama, and T. Nagasaka, Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution, J. Hazard. Mater., 302(2016), p. 90. doi: 10.1016/j.jhazmat.2015.09.020
    [29]
    H.M. Wu, J.L. Li, W.X. Teng, et al., One-step extraction of zinc and separation of iron from hazardous electric arc furnace dust via sulphating roasting–water leaching, J. Environ. Chem. Eng., 11(2023), No. 6, art. No. 111155. doi: 10.1016/j.jece.2023.111155
    [30]
    Y.C. Li, F.P. Zhao, H. Liu, B. Peng, X.B. Min, and Z. Lin, Recycling of zinc and iron from smelting waste containing zinc ferrite via sulfating roasting using SO2: Transformation effects and mechanisms, JOM, 75(2023), No. 2, p. 268. doi: 10.1007/s11837-022-05601-9
    [31]
    Y.C. Li, S.N. Zhuo, B. Peng, X.B. Min, H. Liu, and Y. Ke, Comprehensive recycling of zinc and iron from smelting waste containing zinc ferrite by oriented transformation with SO2, J. Cleaner Prod., 263(2020), art. No. 121468. doi: 10.1016/j.jclepro.2020.121468
    [32]
    Y. Huang, P.H. Shao, L.M. Yang, et al., Thermochemically driven crystal phase transfer via chlorination roasting toward the selective extraction of lithium from spent LiNi1/3Co1/3Mn1/3O2, Resour. Conserv. Recycl., 174(2021), art. No. 105757. doi: 10.1016/j.resconrec.2021.105757
    [33]
    M.Y. Li, J.K. Yang, S. Liang, et al., Ammonia chloride assisted air-chlorination recovery of tin from pyrometallurgical slag of spent lead-acid battery, Resour. Conserv. Recycl., 170(2021), art. No. 105611. doi: 10.1016/j.resconrec.2021.105611
    [34]
    Y.Y. Ma, X.Y. Zhou, J.J. Tang, X.J. Liu, H.X. Gan, and J. Yang, One-step selective recovery and cyclic utilization of valuable metals from spent lithium-ion batteries via low-temperature chlorination pyrolysis, Resour. Conserv. Recycl., 175(2021), art. No. 105840. doi: 10.1016/j.resconrec.2021.105840
    [35]
    Y. Mochizuki, N. Tsubouchi, and K. Sugawara, Separation of valuable elements from steel making slag by chlorination, Resour. Conserv. Recycl., 158(2020), art. No. 104815. doi: 10.1016/j.resconrec.2020.104815
    [36]
    G.S. Lee and Y.J. Song, Recycling EAF dust by heat treatment with PVC, Miner. Eng., 20(2007), No. 8, p. 739. doi: 10.1016/j.mineng.2007.03.001
    [37]
    H. Matsuura, T. Hamano, and F. Tsukihashi, Chlorination kinetics of ZnFe2O4 with Ar–Cl2–O2 gas, Mater. Trans., 47(2006), p. 2524. doi: 10.2320/matertrans.47.2524
    [38]
    H. Matsuura, T. Hamano, and F. Tsukihashi, Removal of Zn and Pb from Fe2O3–ZnFe2O4–ZnO–PbO mixture by selective chlorination and evaporation reactions, ISIJ Int., 46(2006), No. 8, p. 1113. doi: 10.2355/isijinternational.46.1113
    [39]
    H. Matsuura and F. Tsukihashi, Chlorination and evaporation behaviors of PbO–PbCl2 system in Ar–Cl2–O2 atmosphere, ISIJ Int., 45(2005), No. 12, p. 1804. doi: 10.2355/isijinternational.45.1804
    [40]
    H. Matsuura and F. Tsukihashi, Chlorination kinetics of ZnO with Ar–Cl2–O2 gas and the effect of oxychloride formation, Metall. Mater. Trans. B, 37(2006), No. 3, p. 413. doi: 10.1007/s11663-006-0026-7
    [41]
    H. Matsuura and F. Tsukihashi, Recovery of metals from steelmaking dust by selective chlorination–evaporation process, Miner. Process. Extr. Metall., 117(2008), No. 2, p. 123. doi: 10.1179/174328508X290920
    [42]
    T. Guo, X.J. Hu, H. Matsuura, F. Tsukihashi, and G.Z. Zhou, Kinetics of Zn removal from ZnO–Fe2O3–CaCl2 system, ISIJ Int., 50(2010), No. 8, p. 1084. doi: 10.2355/isijinternational.50.1084
    [43]
    G. Iwase and K. Okumura, Nonisothermal investigation of reaction kinetics between electric arc furnace dust and calcium chloride under carbon-containing conditions, ISIJ Int., 61(2021), No. 10, p. 2483. doi: 10.2355/isijinternational.ISIJINT-2021-128
    [44]
    J.D. Huang, G.Q. Li, and X. Yang, Chlorination of ZnFe2O4 by molten MgCl2: Effect of adding CaCl2, J. Sustainable Metall., 9(2023), No. 3, p. 1253. doi: 10.1007/s40831-023-00727-9
    [45]
    J. Kang and T.H. Okabe, Removal of iron from titanium ore through selective chlorination using magnesium chloride, Mater. Trans., 54(2013), No. 8, p. 1444. doi: 10.2320/matertrans.M-M2013810
    [46]
    J.D. Huang, I. Sohn, Y. Kang, and X. Yang, Separation of Zn and Fe in ZnFe2O4 by reaction with MgCl2, Metall. Mater. Trans. B, 53(2022), No. 4, p. 2634. doi: 10.1007/s11663-022-02556-9
    [47]
    Y. Xue, X.M. Liu, N. Zhang, S. Guo, Z.Q. Xie, and C.B. Xu, A novel process for the treatment of steelmaking converter dust: Selective leaching and recovery of zinc sulfate and synthesis of iron oxides@HTCC photocatalysts by carbonizing carbohydrates, Hydrometallurgy, 217(2023), art. No. 106039. doi: 10.1016/j.hydromet.2023.106039
    [48]
    Y. Xue, X.M. Liu, C.B. Xu, and Y.H. Han, Hydrometallurgical detoxification and recycling of electric arc furnace dust, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2076. doi: 10.1007/s12613-023-2637-2
    [49]
    I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft mbH, 1989.
    [50]
    C. Murugesan, L. Okrasa, K. Ugendar, et al., Improved magnetic and electrical properties of Zn substituted nanocrystalline MgFe2O4 ferrite, J. Magn. Magn. Mater., 550(2022), art. No. 169066. doi: 10.1016/j.jmmm.2022.169066
    [51]
    S. Shaik, Z.Y. Chen, P.P. Sahoo, and C.R. Borra, Kinetics of solid-state reduction of chromite overburden, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2347. doi: 10.1007/s12613-023-2681-y
    [52]
    Q. Zhang, Y.S. Sun, Y.X. Han, Y.J. Li, and P. Gao, Reaction behavior and non-isothermal kinetics of suspension magnetization roasting of limonite and siderite, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 824. doi: 10.1007/s12613-022-2523-3
    [53]
    R.D. Seals, R. Alexander, L.T. Taylor, and J.G. Dillard, Core electron binding energy study of group IIb-VIIa compounds, Inorg. Chem., 12(1973), No. 10, p. 2485. doi: 10.1021/ic50128a059
    [54]
    L.R. Pederson, Two-dimensional chemical-state plot for lead using XPS, J. Electron. Spectrosc. Relat. Phenom., 28(1982), No. 2, p. 203. doi: 10.1016/0368-2048(82)85043-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1595) PDF Downloads(40) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return