Wencan Chen, Chao Li, Yehan Tao, Jie Lu, Jian Du, and Haisong Wang, Chitosan-based triboelectric materials for self-powered sensing at high temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2518-2527. https://doi.org/10.1007/s12613-024-2839-2
Cite this article as:
Wencan Chen, Chao Li, Yehan Tao, Jie Lu, Jian Du, and Haisong Wang, Chitosan-based triboelectric materials for self-powered sensing at high temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2518-2527. https://doi.org/10.1007/s12613-024-2839-2
Research Article

Chitosan-based triboelectric materials for self-powered sensing at high temperatures

+ Author Affiliations
  • Corresponding authors:

    Jian Du    E-mail: wanghs@dlpu.edu.cn

    Haisong Wang    E-mail: dujian01@dlpu.edu.cn

  • Received: 31 October 2023Revised: 17 January 2024Accepted: 18 January 2024Available online: 20 January 2024
  • Although biopolymers have been widely utilized as triboelectric materials for the construction of self-powered sensing systems, the annihilation of triboelectric charges at high temperatures restricts the output signals and sensitivity of the assembled sensors. Herein, a novel chitosan/montmorillonite/lignin (CML) composite film was designed and employed as a tribopositive layer in the assembly of a self-powered sensing system for use under hot conditions (25–70°C). The dense contact surface resulting from the strong intermolecular interaction between biopolymers and nanofillers restrained the volatilization of induced electrons. The optimized CML-TENG delivered the highest open-circuit voltage (Voc) of 262 V and maximum instantaneous output power of 429 mW/m2. Pristine CH-TENG retained only 39% of its initial Voc at 70°C, whereas the optimized CM5L3-TENG retained 66% of its initial Voc. Our work provides a new strategy for suppressing the annihilation of triboelectric charges at high temperatures, thus boosting the development of self-powered sensing devices for application under hot conditions.
  • loading
  • Supplementary Information-s12613-024-2839-2.docx
    IJM-10-2023-0983.R2material_Supporting_Information 240912 f-zj j.mp4
  • [1]
    M. Shanbedi, H. Ardebili, and A. Karim, Polymer-based triboelectric nanogenerators: Materials, characterization, and applications, Prog. Polym. Sci., 144(2023), art. No. 101723. doi: 10.1016/j.progpolymsci.2023.101723
    [2]
    Y.T. Wang, Z.H. Li, H. Fu, and B.G. Xu, Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing, Nano Energy, 115(2023), art. No. 108717. doi: 10.1016/j.nanoen.2023.108717
    [3]
    N.N. Wang, W.H. Zhang, Z.B. Li, et al., Dual-electric-polarity augmented cyanoethyl cellulose-based triboelectric nanogenerator with ultra-high triboelectric charge density and enhanced electrical output property at high humidity, Nano Energy, 103(2022), art. No. 107748. doi: 10.1016/j.nanoen.2022.107748
    [4]
    L.L. Shang, Z.P. Wu, X.Y. Li, et al., A breathable and highly impact-resistant shear-thickened fluid (STF) based TENG via hierarchical liquid-flow spinning for intelligent protection, Nano Energy, 118(2023), art. No. 108955. doi: 10.1016/j.nanoen.2023.108955
    [5]
    X.H. Ge, N. Hu, F.J. Yan, and Y. Wang, Development and applications of electrospun nanofiber-based triboelectric nanogenerators, Nano Energy, 112(2023), art. No. 108444. doi: 10.1016/j.nanoen.2023.108444
    [6]
    N.N. Wang, Y.B. Zheng, Y.G. Feng, F. Zhou, and D.A. Wang, Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment, Nano Energy, 77(2020), art. No. 105088. doi: 10.1016/j.nanoen.2020.105088
    [7]
    F.R. Fan, Z.Q. Tian, and Z.L. Wang, Flexible triboelectric generator, Nano Energy, 1(2012), No. 2, p. 328. doi: 10.1016/j.nanoen.2012.01.004
    [8]
    Y.M. Li, S.E. Chen, H. Yan, et al., Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing, Chem. Eng. J., 468(2023), art. No. 143572. doi: 10.1016/j.cej.2023.143572
    [9]
    N. Wang, Y. Liu, Y. Feng, et al., Revamping triboelectric output by deep trap construction, Adv. Mater., 36(2023), No. 13, art. No. 2303389.
    [10]
    X. Suo, B. Li, H.F. Ji, et al., Dielectric layer doping for enhanced triboelectric nanogenerators, Nano Energy, 114(2023), art. No. 108651. doi: 10.1016/j.nanoen.2023.108651
    [11]
    T. Charoonsuk, S. Pongampai, P. Pakawanit, and N. Vittayakorn, Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: Influence of morphology and molecular structure, Nano Energy, 89(2021), art. No. 106430. doi: 10.1016/j.nanoen.2021.106430
    [12]
    H.J. Xiang, J. Yang, X. Cao, and N. Wang, Flexible and highly sensitive triboelectric nanogenerator with magnetic nanocomposites for cultural heritage conservation and human motion monitoring, Nano Energy, 101(2022), art. No. 107570. doi: 10.1016/j.nanoen.2022.107570
    [13]
    X.H. Zhang, J.W. Xu, X.M. Zhang, et al., Simultaneous evaporation and foaming for batch coaxial extrusion of liquid metal/polydimethylsiloxane porous fibrous TENG, Adv. Fiber Mater., 5(2023), No. 6, p. 1949. doi: 10.1007/s42765-023-00314-3
    [14]
    Z.Y. Xu, D.Z. Zhang, X.H. Liu, Y. Yang, X.W. Wang, and Q.Z. Xue, Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor, Nano Energy, 94(2022), art. No. 106881. doi: 10.1016/j.nanoen.2021.106881
    [15]
    J.N. Kim, J. Lee, T.W. Go, et al., Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator, Nano Energy, 75(2020), art. No. 104904. doi: 10.1016/j.nanoen.2020.104904
    [16]
    T.G. Weldemhret, D.W. Lee, M.N. Prabhakar, Y.T. Park, and J.I. Song, Polyurethane foams coated with phosphorus-doped mesoporous carbon for flame-retardant triboelectric nanogenerators, ACS Appl. Nano Mater., 5(2022), No. 9, p. 12464. doi: 10.1021/acsanm.2c01999
    [17]
    Z.H. Liu, B.Z. Li, J.S. Yuan, and Y.J. Yuan, Creative biological lignin conversion routes toward lignin valorization, Trends Biotechnol., 40(2022), No. 12, p. 1550. doi: 10.1016/j.tibtech.2022.09.014
    [18]
    N.R. Tanguy, M. Rana, A.A. Khan, et al., Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics, Nano Energy, 98(2022), art. No. 107337. doi: 10.1016/j.nanoen.2022.107337
    [19]
    R.J. Zhang, R.H. Xia, X. Cao, and N. Wang, Nutshell powder-based green triboelectric nanogenerator for wind energy harvesting, Adv. Mater. Interfaces, 9(2022), No. 21, art. No. 2200293. doi: 10.1002/admi.202200293
    [20]
    X. Zhao, L.X. Xu, X.C. Xun, F.F. Gao, Q.L. Liao, and Y. Zhang, Dynamic behavior of tunneling triboelectric charges in two-dimensional materials, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1801. doi: 10.1007/s12613-023-2659-9
    [21]
    A. Yar, A. Okbaz, and Ş. Parlayıcı, A biocompatible, eco-friendly, and high-performance triboelectric nanogenerator based on sepiolite, bentonite, and Kaolin decorated CS composite film, Nano Energy, 110(2023), art. No. 108354. doi: 10.1016/j.nanoen.2023.108354
    [22]
    Y. Shao, C.P. Feng, B.W. Deng, B. Yin, and M.B. Yang, Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant, Nano Energy, 62(2019), p. 620. doi: 10.1016/j.nanoen.2019.05.078
    [23]
    X.C. Wang, N.J. Hu, J. Yang, et al., High-performance triboelectric nanogenerator based on ZrB2/polydimethylsiloxane for metal corrosion protection, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1957. doi: 10.1007/s12613-023-2626-5
    [24]
    C. Gao, T. Liu, B. Luo, et al., Cellulosic triboelectric materials for stable energy harvesting from hot and humid conditions, Nano Energy, 111(2023), art. No. 108426. doi: 10.1016/j.nanoen.2023.108426
    [25]
    P. Widsten, T. Tamminen, A. Paajanen, T. Hakkarainen, and T.Liitiä, Modified and unmodified technical lignins as flame retardants for polypropylene, Holzforschung, 75(2021), No. 6, p. 584. doi: 10.1515/hf-2020-0147
    [26]
    N.N. Wang, Y.G. Feng, Y.B. Zheng, et al., New hydrogen bonding enhanced polyvinyl alcohol based self-charged medical mask with superior charge retention and moisture resistance performances, Adv. Funct. Mater., 31(2021), No. 14, art. No. 2009172. doi: 10.1002/adfm.202009172
    [27]
    W. Cho, J.R. Shields, L. Dubrulle, et al., Ion-complexed chitosan formulations as effective fire-retardant coatings for wood substrates, Polym. Degrad. Stab., 197(2022), art. No. 109870. doi: 10.1016/j.polymdegradstab.2022.109870
    [28]
    W. Tan, Y.H. Zhang, Y.S. Szeto, and L.B. Liao, A novel method to prepare chitosan/montmorillonite nanocomposites in the presence of hydroxy-aluminum oligomeric cations, Compos. Sci. Technol., 68(2008), No. 14, p. 2917. doi: 10.1016/j.compscitech.2007.10.007
    [29]
    M. Kumar, S.N. Upadhyay, and P.K. Mishra, Effect of montmorillonite clay on pyrolysis of paper mill waste, Bioresour. Technol., 307(2020), art. No. 123161. doi: 10.1016/j.biortech.2020.123161
    [30]
    S.M. Zhang, C. Zheng, M.L. Li, et al., Sodium lignosulfonate cross-linked bioprosthetic heart valve materials for enhanced cytocompatibility, improved hemocompatibility, and reduced calcification, Composites Part B, 234(2022), art. No. 109669. doi: 10.1016/j.compositesb.2022.109669
    [31]
    T. Matsumoto, S. Mori, T. Ohashi, C.Y. He, and T. Nishino, Stress-transfer analyses in cellulose nanofiber/montmorillonite nanocomposites with X-ray diffraction and chemical interaction between cellulose nanofiber and montmorillonite, Cellulose, 29(2022), No. 5, p. 2949. doi: 10.1007/s10570-022-04423-x
    [32]
    L.Y. Wang, X.X. Ji, Y. Cheng, et al., All-biodegradable soy protein isolate/lignin composite cross-linked by oxidized sucrose as agricultural mulch films for green farming, Int. J. Biol. Macromol., 223(2022), p. 120. doi: 10.1016/j.ijbiomac.2022.10.251
    [33]
    M. Michelin, A.M. Marques, L.M. Pastrana, J.A. Teixeira, and M.A. Cerqueira, Carboxymethyl cellulose-based films: Effect of organosolv lignin incorporation on physicochemical and antioxidant properties, J. Food Eng., 285(2020), art. No. 110107. doi: 10.1016/j.jfoodeng.2020.110107
    [34]
    H.Y. Chen, J.H. Zhan, L. Man, et al., High foliar retention tannic acid/Fe3+ functionalized Ti-pillared montmorillonite pesticide formulation with pH-responsibility and high UV stability, Appl. Surf. Sci., 620(2023), art. No. 156838. doi: 10.1016/j.apsusc.2023.156838
    [35]
    S.F. Hosseini, J. Ghaderi, and M.C. Gómez-Guillén, Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets, Food Hydrocoll., 124(2022), art. No. 107249. doi: 10.1016/j.foodhyd.2021.107249
    [36]
    Y.L. Ren, T. Tian, L.N. Jiang, and Y.B. Guo, Fabrication of chitosan-based intumescent flame retardant coating for improving flame retardancy of polyacrylonitrile fabric, Molecules, 24(2019), No. 20, art. No. 3749. doi: 10.3390/molecules24203749
    [37]
    N. Tahari, P.L. de Hoyos-Martinez, N. Izaguirre, et al., Preparation of chitosan/tannin and montmorillonite films as adsorbents for methyl orange dye removal, Int. J. Biol. Macromol., 210(2022), p. 94. doi: 10.1016/j.ijbiomac.2022.04.231
    [38]
    S.W. Cui, J.P. Wang, L.W. Mi, et al., A new synergetic system based on triboelectric nanogenerator and corrosion inhibitor for enhanced anticorrosion performance, Nano Energy, 91(2022), art. No. 106696. doi: 10.1016/j.nanoen.2021.106696
    [39]
    F. Jiang, L. Zhan, J.P. Lee, and P.S. Lee, Triboelectric nanogenerators based on fluid medium: From fundamental mechanisms toward multifunctional applications, Adv. Mater., 36(2024), No. 6, art. No. e2308197. doi: 10.1002/adma.202308197
    [40]
    C. Xu, J.R. Yu, Z.W. Huo, Y.F. Wang, Q.J. Sun, and Z.L. Wang, Pursuing the tribovoltaic effect for direct-current triboelectric nanogenerators, Energy Environ. Sci., 16(2023), No. 3, p. 983. doi: 10.1039/D2EE04019K
    [41]
    Y. Cheng, W.D. Zhu, X.F. Lu, and C. Wang, Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing, Nano Energy, 98(2022), art. No. 107229. doi: 10.1016/j.nanoen.2022.107229
    [42]
    Y.Y. Gao, G.X. Liu, T.Z. Bu, et al., MXene based mechanically and electrically enhanced film for triboelectric nanogenerator, Nano Res., 14(2021), No. 12, p. 4833. doi: 10.1007/s12274-021-3437-5
    [43]
    X.J. Zhang, S.S. Tang, R. Ma, et al., High-performance multimodal smart textile for artificial sensation and health monitoring, Nano Energy, 103(2022), art. No. 107778. doi: 10.1016/j.nanoen.2022.107778
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(963) PDF Downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return