Cite this article as: |
Xiaorui Zhang, Min Zou, Song Lu, Longfei Li, Xiaoli Zhuang, and Qiang Feng, A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1373-1381. https://doi.org/10.1007/s12613-024-2843-6 |
Longfei Li E-mail: lilf@skl.ustb.edu.cn
Qiang Feng E-mail: qfeng@skl.ustb.edu.cn
[1] |
J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Cobalt-base high-temperature alloys, Science, 312(2006), No. 5770, p. 90. doi: 10.1126/science.1121738
|
[2] |
A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, and M. Göken, Creep properties of different γ′-strengthened Co-base superalloys, Mater. Sci. Eng. A, 550(2012), p. 333. doi: 10.1016/j.msea.2012.04.083
|
[3] |
K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Phase equilibria and microstructure on γ′ phase in Co–Ni–Al–W system, Mater. Trans., 49(2008), No. 6, p. 1474. doi: 10.2320/matertrans.MER2008073
|
[4] |
C.H. Zenk, S. Neumeier, N.M. Engl, et.al, Intermediate Co/Ni-base model superalloys—Thermophysical properties, creep and oxidation, Scripta Mater., 112(2016), p. 83. doi: 10.1016/j.scriptamat.2015.09.018
|
[5] |
S.K. Makineni, B. Nithin, and K. Chattopadhyay, Synthesis of a new tungsten-free γ–γ′ cobalt-based superalloy by tuning alloying additions, Acta Mater., 85(2015), p. 85. doi: 10.1016/j.actamat.2014.11.016
|
[6] |
F. Xue, H.J. Zhou, and Q. Feng, Improved high-temperature microstructural stability and creep property of novel Co-base single-crystal alloys containing Ta and Ti, JOM, 66(2014), No. 12, p. 2486. doi: 10.1007/s11837-014-1181-y
|
[7] |
D.S. Ng, D.W. Chung, J.P. Toinin, D.N. Seidman, D.C. Dunand, and E.A. Lass, Effect of Cr additions on a γ-γ′ microstructure and creep behavior of a Co-based superalloy with low W content, Mater. Sci. Eng. A, 778(2020), art. No. 139108. doi: 10.1016/j.msea.2020.139108
|
[8] |
X.L. Zhuang, S. Antonov, L.F. Li, and Q. Feng, Effect of alloying elements on the coarsening rate of γʹ precipitates in multi-component CoNi-based superalloys with high Cr content, Scripta Mater., 202(2021), art. No. 114004. doi: 10.1016/j.scriptamat.2021.114004
|
[9] |
S. Neumeier, L.P. Freund, and M. Göken, Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance, Scripta Mater., 109(2015), p. 104. doi: 10.1016/j.scriptamat.2015.07.030
|
[10] |
Y. Zhang, H.D. Fu, X.Z. Zhou, Y.H. Zhang, H.B. Dong, and J.X. Xie, Microstructure evolution of multicomponent γ′-strengthened Co-based superalloy at 750°C and 1000°C with different Al and Ti contents, Metall. Mater. Trans. A, 51(2020), No. 4, p. 1755. doi: 10.1007/s11661-020-05652-0
|
[11] |
X.L. Zhuang, S. Lu, L.F. Li, and Q. Feng, Microstructures and properties of a novel γ′-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method, Mater. Sci. Eng. A, 780(2020), art. No. 139219. doi: 10.1016/j.msea.2020.139219
|
[12] |
M. Zou, W. Li, L. Li, J.C. Zhao, and Q. Feng, Machine learning assisted design approach for developing γ′-strengthened Co–Ni-base superalloys, [in] Proceedings of the 14th International Symposium on Superalloys, Pennsylvania, 2021, p. 937.
|
[13] |
W.D. Li, L.F. Li, S. Antonov, F. Lu, and Q. Feng, Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ′ phase nano-hardness of multi-component Co–Ni-base superalloys, J. Alloys Compd., 826(2020), art. No. 154182. doi: 10.1016/j.jallcom.2020.154182
|
[14] |
S.A. Forsik, N. Zhou, and T. Wang, Recent developments in the design of next generation γ′-strengthened cobalt-nickel superalloys, [in] Proceedings of the 14th International Symposium on Superalloys, Pennsylvania, 2021, p. 847.
|
[15] |
M. Knop, P. Mulvey, F. Ismail, et al., A new polycrystalline Co–Ni superalloy, JOM, 66(2014), No. 12, p. 2495. doi: 10.1007/s11837-014-1175-9
|
[16] |
S. Neumeier, H.U. Rehman, J. Neuner, et al., Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo, Acta Mater., 106(2016), p. 304. doi: 10.1016/j.actamat.2016.01.028
|
[17] |
L. Klein, Y. Shen, M.S. Killian, and S. Virtanen, Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys, Corros. Sci., 53(2011), No. 9, p. 2713. doi: 10.1016/j.corsci.2011.04.020
|
[18] |
S.M. Das, M.P. Singh, and K. Chattopadhyay, Effect of Cr addition on the evolution of protective alumina scales and the oxidation properties of a Ta stabilized γ′-strengthened Co-Ni-Al-Mo-Ta-Ti alloy, Corros. Sci., 172(2020), art. No. 108683. doi: 10.1016/j.corsci.2020.108683
|
[19] |
H.J. Zhou, W.D. Li, F. Xue, L. Zhang, X.H. Qu, and Q. Feng, Alloying effects on microstructural stability and γ′ phase Nano-hardness in Co–Al–W–Ta–Ti-base superalloys, [in] Proceedings of the 13th International Symposium on Superalloys, Pennsylvania, 2016, p. 981.
|
[20] |
L.J. Li, L. Wang, Z.D. Liang, et al., Effects of Ni and Cr on the high-temperature oxidation behavior and mechanisms of Co- and CoNi-base superalloys, Mater. Des., 224(2022), art. No. 111291. doi: 10.1016/j.matdes.2022.111291
|
[21] |
X.L. Zhuang, S. Antonov, W.D. Li, S. Lu, L.F. Li, and Q. Feng, Alloying effects and effective alloy design of high-Cr CoNi-based superalloys via a high-throughput experiments and machine learning framework, Acta Mater., 243(2023), art. No. 118525. doi: 10.1016/j.actamat.2022.118525
|
[22] |
S. Lu, M. Zou, X.R. Zhang, et al., Data-driven “cross-component” design and optimization of γ′-strengthened Co-based superalloys, Adv. Eng. Mater., 25(2023), art. No. 2201257. doi: 10.1002/adem.202201257
|
[23] |
I.M. Lifshitz and V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19(1961), No. 1-2, p. 35. doi: 10.1016/0022-3697(61)90054-3
|
[24] |
C. Wanger, Theorie der alterung von niederschlagen durch umlosen, Z. Elektrochem., 65(1961), p. 581.
|
[25] |
A.M. Ges, O. Fornaro, and H.A. Palacio, Coarsening behaviour of a Ni-base superalloy under different heat treatment conditions, Mater. Sci. Eng. A, 458(2007), No. 1-2, p. 96. doi: 10.1016/j.msea.2006.12.107
|
[26] |
J. Lapin, M. Gebura, T. Pelachová and M. Nazmy, Coarsening kinetics of cuboidal γ′ precipitates in single crystal nickel base superalloy CMSX-4, Kovove Mater., 46(2008), p. 313.
|
[27] |
D.J. Sauza, D.C. Dun, and D.N. Seidman, Microstructural evolution and high-temperature strength of a γ(f.c.c.)/γ′(L12) Co–Al–W–Ti–B superalloy, Acta Mater., 174(2019), p. 427. doi: 10.1016/j.actamat.2019.05.058
|
[28] |
P. Pandey, S. Kashyap, D. Palanisamy, A. Sharma, and K. Chattopadhyay, On the high temperature coarsening kinetics of γ′ precipitates in a high strength Co37.6Ni35.4Al9.9Mo4.9Cr5.9Ta2.8Ti3.5 fcc-based high entropy alloy, Acta Mater., 177(2019), p. 82. doi: 10.1016/j.actamat.2019.07.011
|
[29] |
W.Z. Wang, T. Jin, J.L. Liu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys, Mater. Sci. Eng. A, 479(2008), No. 1-2, p. 148. doi: 10.1016/j.msea.2007.06.031
|
[30] |
J. Kundin, L. Mushongera, T. Goehler, and H. Emmerich, Phase-field modeling of the γ’-coarsening behavior in Ni-based superalloys, Acta Mater., 60(2012), No. 9, p. 3758. doi: 10.1016/j.actamat.2012.03.023
|
[31] |
S. Meher, S. Nag, J. Tiley, A. Goel, and R. Banerjee, Coarsening kinetics of γ′ precipitates in cobalt-base alloys, Acta Mater., 61(2013), No. 11, p. 4266. doi: 10.1016/j.actamat.2013.03.052
|
[32] |
F. Mastromatteo, F. Niccolai, M. Giannozzi, and U. Bardi, The coarsening kinetic of γ′ particles in nickel-based superalloys during aging at high temperatures, [in] Proceedings of the Turbo Expo : Power for Land , Sea , and Air, Barcelona, 2004, p. 851.
|
[33] |
L. Klein, High Temperature Oxidation and Electrochemical Studies on Novel Co-Base Superalloys [Dissertation], Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 2013.
|
[34] |
A.C. Yeh, S.C. Wang, C.F. Cheng, Y.J. Chang, and S.C. Chang, Oxidation behaviour of Si-bearing Co-based alloys, Oxid. Met., 86(2016), No. 1-2, p. 99. doi: 10.1007/s11085-016-9623-2
|
[35] |
R. Baldan, R. Guimarães, C.A. Nunes, S.B. Gabriel, and G.C. Coelho, Oxidation behavior of the niobium-modified MAR-M247 superalloy at 1000°C in air, Oxid. Met., 83(2015), No. 1-2, p. 151. doi: 10.1007/s11085-014-9517-0
|
[36] |
M. Göbel, A. Rahmel, and M. Schütze, The isothermal-oxidation behavior of several nickel-base single-crystal superalloys with and without coatings, Oxid. Met., 39(1993), No. 3-4, p. 231. doi: 10.1007/BF00665614
|
[37] |
J.H. Xiao, Y. Xiong, L. Wang, et al., Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100°C, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1957. doi: 10.1007/s12613-020-2204-z
|
[38] |
A. Suzuki, High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys, Acta Mater., 56(2008), No. 6, p. 1288. doi: 10.1016/j.actamat.2007.11.014
|
[39] |
J.R. Davis, Nickel , Cobalt , and Their Alloys, ASM International, Ohio, 2000.
|
[40] |
C.T. Sims, N.S. Stoloff, and W.C. Hagel, Superalloys II, Wiley-Interscience, New York, 1987.
|
[41] |
A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Creep strength and microstructure of polycrystalline γ′-strengthened cobalt-base superalloys, [in] Proceedings of the 12th International Symposium on Superalloys, Pennsylvania, 2012, p. 695.
|
[42] |
M. Kvapilová, K. Kuchařová, K. Hrbáček, and V. Sklenička, Creep processes in MAR-M247 nickel-base superalloy, Solid State Phenom., 258(2016), p. 603. doi: 10.4028/www.scientific.net/SSP.258.603
|
[43] |
W.D. Li, L.F. Li, S. Antonov, and Q. Feng, Effective design of a Co–Ni–Al–W–Ta–Ti alloy with high γ′ solvus temperature and microstructural stability using combined CALPHAD and experimental approaches, Mater. Des., 180(2019), art. No. 107912. doi: 10.1016/j.matdes.2019.107912
|
[44] |
N. Xiao, X. Guan, D. Wang, H.L. Yan, M.H. Cai, N. Jia, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667. doi: 10.1007/s12613-023-2641-6
|
[45] |
K. Durst and M. Göken, Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys, Mater. Sci. Eng. A, 387-389(2004), p. 312. doi: 10.1016/j.msea.2004.03.079
|
[46] |
L. Xu, C.G. Tian, C.Y. Cui, Y.F. Gu, and X.F. Sun, Morphology evolution of unstable γ′ in Ni–Co based superalloy, Mater. Sci. Technol., 30(2014), No. 8, p. 962. doi: 10.1179/1743284713Y.0000000381
|
[47] |
X. Li, N. Saunders, and A.P. Miodownik, The coarsening kinetics of γ′ particles in nickel-based alloys, Metall. Mater. Trans. A, 33(2002), No. 11, p. 3367. doi: 10.1007/s11661-002-0325-9
|
[48] |
J. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk, and H.L. Fraser, Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT, Acta Mater., 57(2009), No. 8, p. 2538. doi: 10.1016/j.actamat.2009.02.010
|
[49] |
B.H. Kear, F.S. Pettit, D.E. Fornwalt, and L.P. Lemaire, On the transient oxidation of a Ni–15Cr–6Al alloy, Oxid. Met., 3(1971), No. 6, p. 557. doi: 10.1007/BF00605003
|
[50] |
Z.Y. Zhu, Y.F. Cai, Y.J. Gong, G.P. Shen, Y.G. Tu, and G.F. Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000°C, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 776. doi: 10.1007/s12613-017-1461-y
|
[51] |
Y.H. Zhang, Z.X. Li, Y.W. Gui, H.D. Fu, and J.X. Xie, Effect of Ti and Ta content on the oxidation resistance of Co–Ni-based superalloys, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 351. doi: 10.1007/s12613-023-2733-3
|
[52] |
S. Antonov, M. Detrois, D. Isheim, et al., Comparison of thermodynamic database models and APT data for strength modeling in high Nb content γ–γ′ Ni-base superalloys, Mater. Des., 86(2015), p. 649. doi: 10.1016/j.matdes.2015.07.171
|