Anran Zhang, Xinquan Zhou, Ranran Gu, and Zhiguo Xia, Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1456-1461. https://doi.org/10.1007/s12613-024-2844-5
Cite this article as:
Anran Zhang, Xinquan Zhou, Ranran Gu, and Zhiguo Xia, Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1456-1461. https://doi.org/10.1007/s12613-024-2844-5
Research Article

Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals

+ Author Affiliations
  • Corresponding author:

    Zhiguo Xia    E-mail: xiazg@scut.edu.cn

  • Received: 21 November 2023Revised: 21 January 2024Accepted: 29 January 2024Available online: 30 January 2024
  • Mn2+ doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nanocrystals (NCs). However, it is still difficult to understand the interplay of Mn2+ luminescence and the matrix self-trapped exciton (STE) emission therein. In this study, Mn2+-doped CsCdCl3 NCs are prepared by hot injection, in which CsCdCl3 is selected because of its unique crystal structure suitable for STE emission. The blue emission at 441 nm of undoped CsCdCl3 NCs originates from the defect states in the NCs. Mn2+ doping promotes lattice distortion of CsCdCl3 and generates bright orange-red light emission at 656 nm. The energy transfer from the STEs of CsCdCl3 to the excited levels of the Mn2+ ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl3:Mn2+ NCs. This work highlights the crucial role of energy transfer from STEs to Mn2+ dopants in Mn2+-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
  • loading
  • [1]
    W.B. Chen, W. Li, X.J. Zhang, et al., Carbon dots embedded in lead-free luminescent metal halides crystals towards single-component white emitters, Sci. China Mater., 65(2022), No. 10, p. 2802. doi: 10.1007/s40843-022-2009-y
    [2]
    W.J. Zhu, W.B. Ma, Y.R. Su, et al., Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators, Light Sci. Appl., 9(2020), art. No. 112. doi: 10.1038/s41377-020-00353-0
    [3]
    M.Z. Li and Z.G. Xia, Recent progress of zero-dimensional luminescent metal halides, Chem. Soc. Rev., 50(2021), No. 4, p. 2626. doi: 10.1039/D0CS00779J
    [4]
    Y.Y. Jing, Y. Liu, M.Z. Li, and Z.G. Xia, Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides, Adv. Opt. Mater., 9(2021), No. 8, art. No. 2002213. doi: 10.1002/adom.202002213
    [5]
    C.K. Deng, G.J. Zhou, D. Chen, J. Zhao, Y.G. Wang, and Q.L. Liu, Broadband photoluminescence in 2D organic–inorganic hybrid perovskites: (C7H18N2)PbBr4 and (C9H22N2)PbBr4, J. Phys. Chem. Lett., 11(2020), No. 8, p. 2934. doi: 10.1021/acs.jpclett.0c00578
    [6]
    M.D. Smith, B.L. Watson, R.H. Dauskardt, and H.I. Karunadasa, Broadband emission with a massive stokes shift from sulfonium Pb–Br hybrids, Chem. Mater., 29(2017), No. 17, p. 7083. doi: 10.1021/acs.chemmater.7b02594
    [7]
    V. Morad, S. Yakunin, B.M. Benin, et al., Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography, Adv. Mater., 33(2021), No. 9, art. No. 2007355. doi: 10.1002/adma.202007355
    [8]
    T. Jun, K. Sim, S. Iimura, et al., Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure, Adv. Mater., 30(2018), No. 43, art. No. 1804547. doi: 10.1002/adma.201804547
    [9]
    L.Y. Lian, M.Y. Zheng, W.Z. Zhang, et al., Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons, Adv. Sci., 7(2020), No. 11, art. No. 2000195. doi: 10.1002/advs.202000195
    [10]
    J.H. Han, T. Samanta, Y.M. Park, et al., Effect of self-trapped excitons in the optical properties of manganese-alloyed hexagonal-phased metal halide perovskite, Chem. Eng. J., 450(2022), art. No. 138325. doi: 10.1016/j.cej.2022.138325
    [11]
    W.Y. Jia, Q.L. Wei, S.F. Yao, et al., Magnetic coupling for highly efficient and tunable emission in CsCdX3:Mn perovskites, J. Lumin., 257(2023), art. No. 119657. doi: 10.1016/j.jlumin.2022.119657
    [12]
    Z. Tang, R.Z. Liu, J.S. Chen, et al., Highly efficient and ultralong afterglow emission with anti-thermal quenching from CsCdCl3:Mn perovskite single crystals, Angew. Chem. Int. Ed., 61(2022), No. 51, art. No. e202210975. doi: 10.1002/anie.202210975
    [13]
    B.B. Su, G.J. Zhou, J.L. Huang, E.H. Song, A. Nag, and Z.G. Xia, Mn2+-doped metal halide perovskites: Structure, photoluminescence, and application, Laser Photonics Rev., 15(2021), No. 1, art. No. 2000334. doi: 10.1002/lpor.202000334
    [14]
    F. Locardi, M. Cirignano, D. Baranov, et al., Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals, J. Am. Chem. Soc., 140(2018), No. 40, p. 12989. doi: 10.1021/jacs.8b07983
    [15]
    S.D. Adhikari, A. Dutta, S.K. Dutta, and N. Pradhan, Layered perovskites L2(Pb1− xMn x)Cl4 to Mn-doped CsPbCl3 perovskite platelets, ACS Energy Lett., 3(2018), No. 6, p. 1247. doi: 10.1021/acsenergylett.8b00653
    [16]
    X. Yuan, S.H. Ji, M.C.D. Siena, et al., Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration, Chem. Mater., 29(2017), No. 18, p. 8003. doi: 10.1021/acs.chemmater.7b03311
    [17]
    K.Y. Xu and A. Meijerink, Tuning exciton–Mn2+ energy transfer in mixed halide perovskite nanocrystals, Chem. Mater., 30(2018), No. 15, p. 5346. doi: 10.1021/acs.chemmater.8b02157
    [18]
    X.Q. Zhou, K. Han, Y.X. Wang, et al., Energy-trapping management in X-ray storage phosphors for flexible 3D imaging, Adv. Mater., 35(2023), No. 16, art. No. 2212022. doi: 10.1002/adma.202212022
    [19]
    A.R. Zhang, Y. Liu, G.C. Liu, and Z.G. Xia, Dopant and compositional modulation triggered broadband and tunable near-infrared emission in Cs2Ag1− xNa xInCl6:Cr3+ nanocrystals, Chem. Mater., 34(2022), No. 7, p. 3006. doi: 10.1021/acs.chemmater.1c03878
    [20]
    R. Demirbilek, A.Ç. Bozdoğan, M. Çalışkan, G. Asan, and G. Özen, Electronic energy levels of CsCdCl3, J. Lumin., 131(2011), No. 9, p. 1853. doi: 10.1016/j.jlumin.2011.05.003
    [21]
    Y. Zhang, L. Zhou, D. Li, et al., Realizing efficient emission in three-dimensional CsCdCl3 single crystals by introducing separated emitting centers, Inorg. Chem., 61(2022), No. 44, p. 17902. doi: 10.1021/acs.inorgchem.2c03277
    [22]
    M.Y. Leng, Y. Yang, Z.W. Chen, et al., Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission, Nano Lett., 18(2018), No. 9, p. 6076. doi: 10.1021/acs.nanolett.8b03090
    [23]
    Y.Y. Jing, Y. Liu, J. Zhao, and Z.G. Xia, Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals, J. Phys. Chem. Lett., 10(2019), No. 23, p. 7439. doi: 10.1021/acs.jpclett.9b03035
    [24]
    Y. Liu, Y.Y. Jing, J. Zhao, Q.L. Liu, and Z.G. Xia, Design optimization of lead-free perovskite Cs2AgInCl6:Bi nanocrystals with 11.4% photoluminescence quantum yield, Chem. Mater., 31(2019), No. 9, p. 3333. doi: 10.1021/acs.chemmater.9b00410
    [25]
    Y.X. Huang, Y.X. Pan, S.T. Guo, C.D. Peng, H.Z. Lian, and J. Lin, Large spectral shift of Mn2+ emission due to the shrinkage of the crystalline host lattice of the hexagonal CsCdCl3 crystals and phase transition, Inorg. Chem., 61(2022), No. 21, p. 8356. doi: 10.1021/acs.inorgchem.2c00995
    [26]
    W. Zhang, J.J. Wei, Z.L. Gong, et al., Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals, Adv. Sci., 7(2020), No. 22, art. No. 2002210. doi: 10.1002/advs.202002210
    [27]
    P. Arunkumar, K.H. Gil, S. Won, et al., Colloidal organolead halide perovskite with a high Mn solubility limit: A step toward Pb-free luminescent quantum dots, J. Phys. Chem. Lett., 8(2017), No. 17, p. 4161. doi: 10.1021/acs.jpclett.7b01440
    [28]
    R. Yang, D. Yang, M. Wang, et al., High-efficiency and stable long-persistent luminescence from undoped cesium cadmium chlorine crystals induced by intrinsic point defects, Adv. Sci., 10(2023), No. 15, art. No. 2207331. doi: 10.1002/advs.202207331
    [29]
    S.S. He, Q.P. Qiang, T.C. Lang, et al., Highly stable orange-red long-persistent luminescent CsCdCl3:Mn2+ perovskite crystal, Angew. Chem. Int. Ed., 61(2022), No. 48, art. No. e202208937. doi: 10.1002/anie.202208937
    [30]
    S.G. Ge, H. Peng, Q.L. Wei, et al., Realizing color-tunable and time-dependent ultralong afterglow emission in antimony-doped CsCdCl3 metal halide for advanced anti-counterfeiting and information encryption, Adv. Opt. Mater., 11(2023), No. 14, art. No. 2300323. doi: 10.1002/adom.202300323
    [31]
    W.X. Dong, Y.C. Xu, P. Su, et al., Excitation wavelength-dependent long-afterglow Sb, Mn-doped CsCdCl3 perovskite for anti-counterfeiting applications, Ceram. Int., 50(2024), No. 4, p. 6374. doi: 10.1016/j.ceramint.2023.11.372
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Share Article

    Article Metrics

    Article Views(571) PDF Downloads(35) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return