Junjie Shi, Yumo Zhai, Yuchao Qiu, Changle Hou, Jingjing Dong, Maoxi Yao, Haolun Li, Yongrong Zhou,  and Jianzhong Li, Phase equilibria relations in the V2O5-rich part of the Fe2O3–TiO2–V2O5 system at 1200°C related to converter vanadium-bearing slag, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2017-2024. https://doi.org/10.1007/s12613-024-2845-4
Cite this article as:
Junjie Shi, Yumo Zhai, Yuchao Qiu, Changle Hou, Jingjing Dong, Maoxi Yao, Haolun Li, Yongrong Zhou,  and Jianzhong Li, Phase equilibria relations in the V2O5-rich part of the Fe2O3–TiO2–V2O5 system at 1200°C related to converter vanadium-bearing slag, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2017-2024. https://doi.org/10.1007/s12613-024-2845-4
Research Article

Phase equilibria relations in the V2O5-rich part of the Fe2O3–TiO2–V2O5 system at 1200°C related to converter vanadium-bearing slag

+ Author Affiliations
  • Corresponding author:

    Junjie Shi    E-mail: junjieshi@126.com

  • Received: 28 May 2023Revised: 6 January 2024Accepted: 4 February 2024Available online: 6 February 2024
  • The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy. The key to developing novel processes and improving traditional routes lies in the thermodynamic data. In this study, the equilibrium phase relations for the Fe2O3–TiO2–V2O5 system at 1200°C in air were investigated using a high-temperature equilibrium-quenching technique, followed by analysis using scanning electron microscopy-energy dispersive X-ray spectrometer and X-ray photoelectron spectroscopy. One liquid-phase region, two two-phase regions (liquid–rutile and liquid–ferropseudobrookite), and one three-phase region (liquid–rutile–ferropseudobrookite) were determined. The variation in the TiO2 and V2O5 contents with the Fe2O3 content was examined for rutile and ferropseudobrookite solid solutions. However, on further comparison with the predictions of FactSage 8.1, significant discrepancies were identified, highlighting that greater attention must be paid to updating the current thermodynamic database related to vanadium-bearing slag systems.
  • loading
  • [1]
    G.S. Pei, J.Y. Xiang, X.W. Lv, G. Li, S.S. Wu, D.P. Zhong, and W. Lv, High-temperature heat capacity and phase transformation kinetics of NaVO3, J. Alloys Compd., 794(2019), p. 465. doi: 10.1016/j.jallcom.2019.04.186
    [2]
    S.Y. Liu, Y.L. Zhen, X.B. He, L.J. Wang, and K. Chou, Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p.1678. doi: 10.1007/s12613-020-2140-y
    [3]
    F. Gao, A.U. Olayiwola, B. Liu, et al., Review of vanadium production part I: Primary resources, Miner. Process. Extr. Metall. Rev., 43(2022), No. 4, p. 466. doi: 10.1080/08827508.2021.1883013
    [4]
    B.J. Chen, T. Jiang, J. Wen, G.D. Yang, T.X. Yu, F.X. Zhu, and P. Hu, High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p.498. doi: 10.1007/s12613-023-2719-1
    [5]
    X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Oxidation process of low-grade vanadium slag in presence of Na2CO3, Trans. Nonferrous Met. Soc. China, 21(2011), No. 8, p. 1860. doi: 10.1016/S1003-6326(11)60942-4
    [6]
    J.F. Liaoand B.J. Zhao, Phase equilibrium studies of titanomagnetite and ilmenite smelting slags, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2162. doi: 10.1007/s12613-021-2376-1
    [7]
    J. Wen, T. Jiang, Y.Z. Xu, J. Cao, and X.X. Xue, Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting–(NH4)2SO4 leaching, J. Ind. Eng. Chem., 71(2019), p. 327. doi: 10.1016/j.jiec.2018.11.043
    [8]
    T.X. Yu, T. Jiang, J. Wen, H.Y. Sun, M. Li, and Y. Peng, Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p.2144. doi: 10.1007/s12613-021-2334-y
    [9]
    H. Peng, J. Guo, X.G. Zheng, Z.H. Liu, and C.Y. Tao, Leaching kinetics of vanadium from calcification roasting converter vanadium slag in acidic medium, J. Environ. Chem. Eng., 6(2018), No. 4, p. 5119. doi: 10.1016/j.jece.2018.08.003
    [10]
    J.H. Zhang, W. Zhang, and Z.L. Xue, Oxidation kinetics of vanadium slag roasting in the presence of calcium oxide, Miner. Process. Extr. Metall. Rev., 38(2017), No. 5, p. 265. doi: 10.1080/08827508.2017.1289197
    [11]
    H.Y. Gao, T. Jiang, M. Zhou, J. Wen, X. Li, Y. Wang, and X.X. Xue, Effect of microwave irradiation and conventional calcification roasting with calcium hydroxide on the extraction of vanadium and chromium from high-chromium vanadium slag, Miner. Eng., 145(2020), art. No. 106056. doi: 10.1016/j.mineng.2019.106056
    [12]
    L. Tian, Z.F. Xu, L.J. Chen, Y. Liu, and T.A. Zhang, Effect of microwave heating on the pressure leaching of vanadium from converter slag, Hydrometallurgy, 184(2019), p. 45. doi: 10.1016/j.hydromet.2018.11.004
    [13]
    J. Wen, T. Jiang, H.Y. Gao, Y.J. Liu, X.L. Zheng, and X.X. Xue, Comparison of ultrasound-assisted and regular leaching of vanadium and chromium from roasted high chromium vanadium slag, JOM, 70(2018), No. 2, p. 155. doi: 10.1007/s11837-017-2662-6
    [14]
    Q. Zhao, C. Liu, X. Mei, H. Saxén, and R. Zevenhoven. Research progress of steel slag-based carbon sequestration, Fundam. Res., (2022). https://doi.org/10.1016/j.fmre.2022.09.023.
    [15]
    X.F. Zhang, F.G. Liu, X.X. Xue, and T. Jiang, Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content, J. Alloys Compd., 686(2016), p. 356. doi: 10.1016/j.jallcom.2016.06.038
    [16]
    J.C. Lee, Kurniawan, E.Y. Kim, K.W. Chung, R. Kim, and H.S. Jeon, A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production, J. Mater. Res. Technol., 12(2021), p. 343. doi: 10.1016/j.jmrt.2021.02.065
    [17]
    H.Y. Li, H.X. Fang, K. Wang, et al., Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching, Hydrometallurgy, 156(2015), p. 124. doi: 10.1016/j.hydromet.2015.06.003
    [18]
    B.J. Yan, D.Y. Wang, Q.G. Qiu, and T.F. Deng, Phase relations in the “FeO–V2O3” system at 1473 K and the magnetic properties of spinel phase Fe3VO4, Ceram. Int., 46(2020), No. 5, p. 6160. doi: 10.1016/j.ceramint.2019.11.082
    [19]
    W. Xie, X.R. Xing, and Z.M. Cao, Phase equilibria in the Fe–V–O system near “FeO”–V2O3 isopleth, J. Am. Ceram. Soc., 103(2020), No. 9, p. 5312. doi: 10.1111/jace.17201
    [20]
    W.D. Malan, G. Akdogan, P. Taskinen, J. Hamuyuni, and J. Zietsman, Phase equilibria and thermodynamic evaluation of the Fe–V–O system in air, Calphad, 63(2018), p. 12. doi: 10.1016/j.calphad.2018.08.003
    [21]
    D.S. Feng, J.B. Zhang, M. Li, M. Chen, and B.J. Zhao, Phase Equilibria of the SiO2–V2O5 system, Ceram. Int., 46(2020), No. 15, p. 24053. doi: 10.1016/j.ceramint.2020.06.183
    [22]
    T. Coetsee, C. Pistorius, Preliminary observations on phase relations in the “V2O3–FeO” and V2O3–TiO2 systems from 1400°C to 1600°C in reducing atmospheres, J. Am. Ceram. Soc., 83(2000), p. 1485. doi: 10.1111/j.1151-2916.2000.tb01414.x
    [23]
    Y. Yang, H.H. Mao, H.L. Chen, and M. Selleby, An assessment of the Ti−V−O system, J. Alloys Compd., 722(2017), p. 365. doi: 10.1016/j.jallcom.2017.05.326
    [24]
    L. Fotiev, A. Tret'yakov, and Z. Khim, Compatibility relations in the Fe2O3−TiO2−V2O5, Cr2O3−TiO2−V2O5 and Al2O3−TiO2−V2O5 systems, Russ. J. Inorg. Chem., 26(1981). p. 1377.
    [25]
    W.D. Malan, G. Akdogan, P. Taskinen, and J. Zietsman, Phase equilibria and thermodynamic evaluation of the Fe−Ti−V−O system in air, Calphad, 65(2019), p. 141. doi: 10.1016/j.calphad.2019.02.014
    [26]
    J. Shi, Y. Qiu, X. Wan, B. Yu, M. Chen, F. Zhao, J. Li, C. Liu, and P. Taskinen, Equilibrium phase relations of the CaO−SiO2−Ti3O5 system at 1400°C and a p(O2) of 10−16 atm, JOM, 74(2022), p. 668. doi: 10.1007/s11837-021-05049-3
    [27]
    X. Wan, J. Shi, Y. Qiu, M. Chen, J. Li, C. Liu, P. Taskinen, and A. Jokilaakso, The effect of 15wt% Al2O3 addition on the equilibrium phase relations of CaO−SiO2−TiO2 system at 1400°C in air, Ceram. Int., 47(2021), p. 24802. doi: 10.1016/j.ceramint.2021.05.205
    [28]
    Y.D. Li, Y.C. Qiu, J.J. Shi, B.Y. Zhang, F. Meng, J.Z. Li, and C.S. Liu, Equilibrium phase relations of a SiO2–Al2O3–FeO x system with 10 wt% CaO addition for the production of continuous basalt fibers, ACS Omega, 6(2021), No. 33, p. 21465. doi: 10.1021/acsomega.1c02287
    [29]
    X.B. Wan, M. Chen, Y.C. Qiu, J.J. Shi, J. Li, C.S. Liu, P. Taskinen, and A. Jokilaakso, Influence of manganese oxide on the liquid-perovskite equilibrium in the CaO–SiO2–TiO2 system at 1400°C in air, Ceram. Int., 47(2021), No. 8, p. 11176. doi: 10.1016/j.ceramint.2020.12.241
    [30]
    Y. Qiu, J. Shi, B. Yu, C. Hou, J. Dong, S. Li, Y. Zhai, J. Li, and C. Liu, Phase equilibria of MgO–Al2O3–TiO2 system at 1600°C in air: Emphasis on pseudobrookite and spinel solid solution phases, J. Am. Ceram. Soc., 105(2022), p. 6953. doi: 10.1111/jace.18642
    [31]
    I.H. Jung and M.A. Van Ende, Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation, Metall. Mater. Trans. B, 51(2020), No. 5, p. 1851. doi: 10.1007/s11663-020-01908-7
    [32]
    M. Chen, X.B. Wan, J.J. Shi, P. Taskinen, and A. Jokilaakso, Experimental study on the phase relations of the SiO2−MgO−TiO2 system in air at 1500°C, JOM, 74(2022), No. 2, p. 676. doi: 10.1007/s11837-021-04870-0
    [33]
    M. Chen, X.B. Wan, P. Taskinen, D. Sukhomlinov, J.J. Shi, R. Michallik, and A. Jokilaakso, Phase equilibria in TiO2-rich part of the MgO–CaO–TiO2 system at 1500–1600°C, Ceram. Int., 48(2022), No. 14, p. 20116. doi: 10.1016/j.ceramint.2022.03.290
    [34]
    D.S. Feng, M. Li, S.L. Yee, Y. Jiang, M. Chen, Y. Peng, and X.D. Ma, Phase equilibrium studies in V2O5−Fe2O3 and V2O5−TiO2 systems, J. Am. Ceram. Soc., 104(2021), No. 9, p. 4843. doi: 10.1111/jace.17851
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1506) PDF Downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return